按照对基础假设的不同,静力计算分为:连续点支承梁的计算和连续基础梁的计算。在连续点支承梁的计算法中,把钢轨视为一根支承在许多弹性支点上的无限长梁。弹性支点的沉落值假定与它所受的压力成正比。运用力学理论,任一截面处的钢轨弯矩、压力和挠度都可求得。如果有许多荷载同时作用于钢轨上,可先分别计算每个荷载对轨道所产生的作用,然后叠加起来。如需求最大数值时,可选择几个较重的车轮分别置于计算截面上,按照机车车轮的排列进行计算比较求得。在连续基础梁的计算法中,则把钢轨视为一根支承在连续弹性基础上的无限长梁。同样,用力学理论,可求出钢轨任一截面的弯矩、压力和挠度。与连续点支承梁方法相比,计算结果相差不多。但在基础刚度较大时,两种计算结果相差可达10%左右。
一直沿用等效静荷载法,即考虑到列车动力作用而把轨道所承受的静荷载适当加大。动荷载的确定有两种方法:①力素分析法。对轨道所承受的各种力素进行分析,对每一种力素乘以不同的系数,再以概率理论将其组合起来,以求得可能发生的最大动荷载。②速度系数法。把静荷载乘以速度系数α,得出换算的动荷载。计算速度系数的公式,各国不同,如美国采用α=1 v/120,式中速度v以英里/时计;对速度v小于100公里/时,联邦德国采用α=1 v/30000。中国1979年颁布的《铁路轨道强度计算法》规定:在蒸汽牵引,列车速度在120公里/时以下时,计算轨底弯曲应力,用α=1 8v/1000,式中v为行车速度,以公里/时计;计算轨道下沉的轨下基础各部件的荷载及应力,则用α=1 6v/1000。力素分析法在理论上似较速度系数法严密,但实际上各种力素变化多端,情况极为复杂,计算结果的可靠度不大,且计算十分繁琐,使用不便,不如速度系数法简单易行。到80年代除苏联外,世界各国大多采用速度系数法。
轨道各部件应力计算主要包括:①钢轨底部的动弯应力。即:σ=M/W,式中σ为钢轨底部纵向纤维应力;M为钢轨弯矩;W为钢轨底部对水平中性轴的截面模量。②轨枕的压应力。仅对木枕进行计算。压应力σa=Q/A,式中Q为钢轨压力;A为轨底或垫板与木枕接触的面积。③道床顶面的压应力。即道床顶面承受轨枕底面传来的压力,假定分布在轨枕两端长度为e的范围内,其值为p=Q/be,式中Q为钢轨压力;b为轨枕宽度。最大压应力则乘以大于1的系数,一般采用1.6。④路基顶面的压应力。一般随道床厚度的增加而减小,但道床厚度达到一定限度时,即使再增加道床厚度,路基面的压应力也不会再减小。以上均为对垂直方向的荷载所进行的计算,横向水平力,在直线上数量不大,约为静荷载的10~15%;在曲线上,视曲线半径大小,机车、车辆类型的不同而异,但一般也只为静荷载的50%以下。在普通线路上,纵向水平力数值很小,一般可不计算。2100433B