结构节点的位置大致位于结构支承点或接合点,接续的方式常见的有以下几种:
滚动接触理论是研究相互接触的物体之间相对运动、相互作用以及由此引起的弹塑性变形、磨损失效等问题的重要学科分支,滚动接触理论正是在轮轨和滚动轴承接触问题的迫切需求下逐步完善并成固体力学的重要组成部分。
滚动接触问题的系统研究始于轮轨接触问题的研究,当前常用的滚动接触问题解决方法多来自轮轨接触研究领域。轮轨接触、滚动轴承、齿轮、摩擦式无级变速传动机构仍然是接触力学和滚动接触理论的重要应用领域。
由于滚动接触问题的系统研究始于轮轨接触问题的研究,当前常用的滚动接触问题解决方法多来自轮轨接触研究领域,因此,下面主要介绍轮轨滚动接触理论。轮轨滚动接触理论(theory of wheel-rail rolling contact)研究轮轨滚动接触行为的理论。轮轨滚动接触理论是研究列车运行时,轮轨相对运动状态和接触斑上作用力的关系。接触斑上的作用力包括其大小、方向和分布。
接触理论的创始人是Hertz Heinrich,1882年他在德国一家杂志上发表了具有开创性的论文“论弹性固体的接触”。他对接触问题的研究起因于对玻璃间光学干涉的试验,两个轴线成45°的圆柱形玻璃透镜受压后发生弹性变形,从弹性变形对干涉条纹图像存在的影响提出了接触压力呈椭圆形分布的假设。这一结论一直在铁路轮轨、齿轮、轴承等工业的发展中起着重要的作用。实际上Hertz理论作了如下简化:接触物体被看作弹性无限半空间,接触载荷仅仅作用在平面上一个小的椭圆区域上,接触体内在接触区附近应力分布是高度集中的,并和物体接触区附近的几何尺寸有关。这就要求接触区几何尺寸远小于物体的几何特征尺寸和接触区附近的曲率半径。Hertz在研究中,又假设接触表面是光滑的,无摩擦效应,接触物体表面仅传递法向力。Hertz接触理论为后来的接触理论及滚动接触理论的发展奠定了理论基础。
这属于静态接触问题,但是铁路车轮在轨道上运动属于滚动接触问题,其研究比静态接触研究复杂。
铰接,指用铰链连接。常用在机器、车辆、门窗、器物的两个部分的装置或零件的连接 ,如铰接式无轨电车、铰接式货车、铰接式客车。人们常见的门扇和门框是连接在一起的,所以它们是不可以分离的,但它们还是可以具有有条件的相对运动。这主要是连接它们的铰链使它们具有门扇和门框的运动特点的。后来人们就把具有门扇和门框的运动特点的连接叫做铰接。铰接在力学分析中以及实际工程中得到广泛的应用。
塑性设计的框架要求塑性铰部位有一定转动能力,以便后续的内力重分布能够出现。
1.刚性连接这种构造假定梁柱连接有足够的刚性,梁柱间无相对转动,连接能承受弯矩。铰支连接这种构造假定结构承受重力荷载时,主梁和柱之间只传递垂直剪力,不传递弯矩。这种连接可以不受约束的转动。
2.在钢结构框架的传统分析与设计中,为简化分析设计过程,梁柱连接被认作理想的铰接连接或完全的刚性连接,并且认为:连接对转动约束达到理想刚接的90%以上,可视为刚接;在外力作用下,柱梁轴线夹角的改变量达到理想铰接的80%以上的连接视为铰接。采用理想铰接的假定,将意味着梁与柱之间没有弯矩的传递,就转动而论,用铰连在一起的梁和柱将相互独立地转动.
能抵抗弯矩作用的柱脚称为刚接柱脚,相反不能抵抗弯矩作用的柱脚称为铰接柱脚,刚接与铰接的区别在于是否能传递弯矩,从实际上看,如果锚栓在翼缘的外侧,就是刚接,而且一般不少于四个,如果在翼缘内侧,就是铰接,一般为两个或四个。
这两种柱脚很明显的区别就是对侧移控制,如果结构对侧移控制较严,则采用刚接柱脚,例如有吊车荷载的情况,吊车荷载是动力荷载,对侧移比较敏感,而且侧移过大会造成吊车卡轨现象,此时应把柱脚设计成刚接柱脚。
刚接是指构件与构件之间既能传递垂直和水平作用,又能传递转动力矩的连接方式。刚接时构件与构件之间的作用力可分解为垂直力、水平力和弯矩。
外围约束构件处于被动受力状态,仅与内核构件发生侧向接触之后才发挥作用。刚接边界条件下内核构件端弯矩的存在,使得内核构件与外围约束构件的接触状态发生改变,这是外围约束构件受力状态发生改变的根本原因。内核构件与外围约束构件的端部接触点可视作外围约束构件发生侧向弯曲的支承点,刚接边界条件下端部负弯矩使得内核构件与外围约束构件的端部接触点离端部更远,故外围约束构件支承点间距离相对较短,侧向变形更小,因此具有更好的受力性能。
精细有限元分析结果表明,3 个模型在加载过程中均保持稳定承载力,而具有相同几何尺寸的两端铰接模型则发生外伸屈服段破坏或因端部附加偏心距过大而出现整体破坏,说明刚接边界条件能有效防止外伸屈服段出现过大的侧向变形,对防屈曲支撑整体受力性能更为有利。