金属材料的断裂韧性、裂纹扩展速率和裂纹扩展的门槛值等力学性能指标已为广大的力学测试、材料研究和金相专家所了解,并已在零部件的强度设计、新材料的研制、材料的应用研究、材料强度规律的试验研究、热处理工艺的选择以及失效分析中得到了广泛的应用。本文的目的,是围绕断裂韧性的“基本原理”和“工程应用”这两个方面,为力学、材料和金相专家们提供更全面、更深入的内容,以便在今后的试验研究和工程应用中发挥更大的效益。
金属材料的平面应变断裂韧性KIC,是在断裂力学这门学科形成后提炼出来的一个新型的力学性能指标。而早期断裂力学的诞生则是研究防止脆性破坏的结果,因此,我们还得先谈一点有关脆性破坏的情况。
脆性破坏是机械零件失效的重要方式之一。它是在零件受载过程中,在没有产生明显宏观塑性变形的情况下,突然发生的一种破坏。由于事先没有明显的迹象,所以脆性破坏的危险性很大。
防止零部件发生脆性破坏的传统方法是:
①要求选用的材料具有一定的塑性指标δ和Ψ,并具有一定的冲击韧性Ak值。这种选材方法完全是根据零部件的使用经验来定的,它既没有充足的理论根据,又不能保证零部件工作的安全性。例如,1950年美国北极星导弹固体燃料发动机壳体在实验发射时,发生了爆炸事故,而所使用的1373MPa屈服强度的D6AC钢是经过严格检验的:其塑性和冲击韧性指标都是完全合格的。又如,我国生产的120T氧气顶吹转炉的转轴也曾经发生过断轴事故,而所使用的40Cr钢的强度、塑性和冲击韧性指标都是经过检验而达到设计要求的。
②采用转变温度的方法,对材料的转变温度提出一定的要求。由于一次冲断试验,只考虑了应力集中和加大应变速率这两个因素,还没有考虑温度降低对材料脆性破坏的影响。为此,设计了系列冲击试验,即在一系列不同温度下进行冲击试验,得到Ak-T曲线和脆性断口百分率-温度T的曲线,由此确定脆性断口转变温度,常用的是FATT50。一般认为,只要零部件的实际工作温度大于材料的脆性转变FAATT50,就不会发生脆性破坏。
尽管如此,上面两种方法都还是经验性的,它们无法找到实验室中的转变温度与实际零部件的转变温度之间的转换关系。因此,按这种方法的设计和选材,要么很保守,要么照样产生脆性破坏。国内外大量的轴、转子、容器和管道、焊接结构出现的大量脆性破坏事故表明,传统的防断方法必须改变。
试验研究表明,大量的低应力脆性破坏的发生,是和零件内部存在宏观缺陷有关的。这些缺陷有的是在生产过程中产生的,如在冶炼、铸造、锻造、热处理和焊接中产生的夹杂、气孔、疏松、白点、折叠、裂纹和未焊透等;有的是在使用过程中产生的,如疲劳裂纹、应力腐蚀裂纹和蠕变裂纹等。所有这些宏观缺陷,在断裂力学中都被假设(抽象化)为裂纹,在零部件承受外加载荷时,裂纹尖端产生应力集中。如果材料的塑性性能很好,它就能使裂纹尖端的集中应力得到充分的松弛,这就可能避免脆性开裂。但是.如果由于某些原因:或是材料的塑性性能很差;或是零件尺寸很大,约束了材料的变形;或是工作温度的降低,使材料工作在转变温度以下;或是加载速率的提高,使材料塑性变形跟不上而呈脆性;或是腐蚀介质或射线辐照的作用引起材料的脆化等等,就有可能使裂纹尖端产生脆性开裂,从而造成零件的脆性破坏。
当带缺陷的物体受力时,研究其内部缺陷——裂纹附件近应力应变场情况及其变化规律,研究裂纹开裂的条件,以及裂纹在交变载荷下的扩展规律等内容,就形成了一门新的学科——断裂力学。