把水灌入热储中会改变热储的状态, 有时影响范围可以达到很大的距离。回灌的影响从回灌点开始以不同的形式向外扩展, 最主要的是压力传导、流体的机械运动和热传导。正确理解三者的机理和关系对回灌工程的设计是非常重要的。在三者之中, 压力传导界面的运动是最快的, 因为它是流体分子能量的传递, 其影响可能几天、几小时甚至几分钟就能到达开采井。化学界面的运移慢于压力传导, 因为它是回灌的物质分子的实际运移, 一般需要几星期或几天才能到达开采井。温度界面的运移是最慢的, 因为回灌水在其运移过程中会被逐渐加热。
在回灌工程设计中, 非常重要的一点就是避免由于回灌水过快地到达开采井,从而引起开采井温度的降低。反之, 如果回灌井距离开采井或地热田开采区过远, 又不能起到保持热储压力, 稳定地热田生产能力的作用。地热回灌是高度依赖场地的, 也就是说每个回灌工程之间会因为开采井和回灌井之间的地质条件不同而存在差异, 甚至存在很大的差异。因此, 在生产性回灌之前必须进行回灌试验, 并在回灌试验的过程中进行示踪试验, 以研究回灌水在热储中运移的规律,研究回灌对于稳定热储压力和改善地热田生产技术条件方面的作用, 研究合理的回灌量和运行方式。
预测温度界面的运移速度在回灌工程设计中的重要性是可想而知的。但是, 在不掌握回灌水运移路径的性质之前, 是很难对此进行计算的。因此, 经常根据示踪试验成果来预测回灌引起开采井冷却的可能性。
我们把回灌水中化学组分(示踪剂)从回灌点运移到开采井称为“示踪剂突破(tracer breakthrough)”, 所用的时间称为“示踪剂突破时间” ;把由于回灌引起开采井温度降低称为“热突破(thermal breakthrough)”, 所需时间称为“热突破时间”。首先, 示踪剂突破是热突破的前奏, 预示着热突破即将到来。通过示踪试验还可以推断热储的性质和求取预测热突破时间的一些必要参数, 比如裂隙的宽度和高度, 进而计算热突破时间。为慎重起见, 尽可能避免回灌井和开采井距离过近, 可首先考虑把回灌井布置在地热田边缘, 这样因回灌而导致地热田冷却的可能性将会大大降低。但是,在回灌井位置已经确定时, 就要研究合理的回灌量, 以避免“过快热突破(premature thermal breakthrough)”。