造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

四极汽轮发电机大型四极汽轮发电机定子温度分布

2022/07/15273 作者:佚名
导读:随着国民经济的发展,对汽轮发电机的需求不断上升。汽轮发电机内部温升直接关系到机组的性能和经济指标,同时还影响发电机的寿命和运行的可靠性。汽轮发电机温升计算是汽轮发电机设计的最主要内容之一。电机冷却的根本任务在于散发掉电机内部损耗产生的热量,使电机各部温升维持在标准范围内。大量应用氢冷电机来满足日益增长的市场需求已经成为一种趋势,对冷却电机的设计及研究的投入显著增加。许多外文文献都曾分析了汽轮发电机

随着国民经济的发展,对汽轮发电机的需求不断上升。汽轮发电机内部温升直接关系到机组的性能和经济指标,同时还影响发电机的寿命和运行的可靠性。汽轮发电机温升计算是汽轮发电机设计的最主要内容之一。电机冷却的根本任务在于散发掉电机内部损耗产生的热量,使电机各部温升维持在标准范围内。大量应用氢冷电机来满足日益增长的市场需求已经成为一种趋势,对冷却电机的设计及研究的投入显著增加。许多外文文献都曾分析了汽轮发电机的流场及温度场。

以某工厂正在研制开发的AP1000水氢氢冷却四极汽轮发电机定子作为研究对象,对汽轮发电机内的温度场进行研究。根据该大型水氢氢冷汽轮发电机定子内冷却介质的流动特性和电机通风冷却系统的特点建立电机三维流场模型,通过对计算域内的模型求解,得到发电机内发热部件的温度分布情况,确定电机定子内冷却介质的最高温升位置;根据以上各计算结果,着重分析了电机的主要固体部件,铜线圈、铁心、磁屏蔽、压板的温度分布规律。

四极汽轮发电机数学模型

电机内的流体视为不可压缩流体,流体的流动处于湍流状态.流动要受到质量守恒定律、动量守恒定律和能量守恒定律三大定律的制约。湍流流动过程中,实际计算常用方法是瞬态N-S方程。在此基础上补充湍流的脉动动能方程和湍流动能耗散方程。其中应用较多的是标准的k-ε两方程标准模型,选用标准k-ε两方程标准模型,单位质量的脉动动能耗散率的定义为:

单位质量的脉动动能耗散率的定义

四极汽轮发电机物理模型和求解条件

1.物理模型

发电机定子有48个槽,在周向结构是重复的,转子有32个槽,为了与转子的一个槽建立对应的结构关系,建立整机机组1/32圆周结构的定子、转子和气隙的三维模型。其中定子部分包含压板、磁屏蔽、定子铁心和线圈,求解物理模型如图4所示。

图4

2.基本假设和边界条件

(1)基本假设:

①忽略重力和浮力对流体的影响;

②电机内流场中,流体流速远小于声速,即马赫数(Ma数)很小,故把流体作为不可压缩粘性流体处理;

③流体的流动为定常流动状态,由于电机中流体的雷诺数很大,属于紊流,因此采用紊流模型对电机内流场进行求解;

④线圈主绝缘、层间绝缘各自的材料物性均相同;

⑤电机内各固体部件之间完全接触,热源密度按照损耗平均分布考虑;

⑥定子线圈的热物理性质参数认为都是相同的,定子空心线圈中冷却水带走的热损耗相同。

(2)边界条件:

①材料物性参数为常数,铁心轴向、周向和径向三个方向的导热系数不相同,系数分别为:1.5W/(m·K)、26W/(m·K)、30W/(m·K),铜线圈的导热系数为387.6W/(m·K),绝缘材料的导热系数为0.3W/(m·K);

②压强设置与计算流场时压力设置相同,定子铁心端部风室的氢气入口温度为318K,定子线圈入口水温为318K;

③磁屏蔽外表面设置对流边界,其余内部流体与固体壁面的交界处采用耦合对流边界,对流系数由耦合计算自动获得;

④各个部件的热源强度由厂方给出的损耗数据进行换算之后得到。

四极汽轮发电机求解结果及分析

1.定子磁屏蔽压板、齿压板温度场分析

用来固定磁屏蔽及定子铁心的磁屏蔽压板和齿压板,其物理属性与定子铁心轭部、齿部材料设置相同。压板本身没有热量产生,但是在磁屏蔽及定子铁心温度的共同作用下,压板会有一定程度的温升,其温度场示意图如图5所示。

图5

在设置齿压板的顶端与磁屏蔽外表面边界条件时,考虑到压板外表面是有气流的冷却作用因此设置为对流换热边界条件。

由图2中颜色分布的情况可以明显的看出外表面受氢气冷却的作用,温度较低;而压板内侧直接与温度较高的磁屏蔽接触,温度有所上升,汽端温度最大值约为354K;由于氢气运动到励端时温度有所上升,换热温差有所减小,使得励端齿压板温度明显高于汽端齿压板温度,最大温度值约为368K;而励端外表面对流换热系数较汽端大,使得出现汽端磁屏蔽压板温度稍高于励端,最低温度值范围小于励端最低温度值范围。

2.定子磁屏蔽温度场分析

在定子里,发热量较大的为磁屏蔽部分和线圈。线圈是用冷却水冷却的,虽然单位发热量大,但单位换热量也大,因此线圈在定子中的温度并不是最高的;磁屏蔽相对体积小,发热量大,靠轴向和径向通风,可径向通风效果不好,冷却性能较低,因此磁屏蔽的温升较高。如图6所示。汽端磁屏蔽的最高温度约为362K,在较大直径处,此位置距离定子通风孔较远,冷却效果不佳.在靠近轴向通风孔区域,由于受到冷却介质的冷却作用,冷却效果明显,磁屏蔽温度相对较低。处于风路末端的磁屏蔽,氢气温度升高,冷却效果减弱,轴向通风附近的固体温度约为355K,明显高于汽端轴向通风部分的331K。励端磁屏蔽最高温度为383K,是在较小半径位置,此处离轴向风路相对较远,热量不能被及时带走,同时氢气的冷却效果也不好;试验测定的磁屏蔽最高温度值为385K,在误差允许的范围内,认为计算准确,通风冷却系统合理。

图6

3.定子铁心温度场分析

由于热源强度的差别,在对温度场进行物理建模时,要将定子铁心分成轭部和齿部两部分,设置求解条件时分别进行设置。

定子铁心轭部温度场如图7所示,温度低的一端为汽端为319K,沿轴向温度逐渐增加,温度最高处是定子铁心励端靠近齿部部分为370K;定子铁心汽、励两端各有两个径向风路,冷却效果相对较好,图7中明显可以看出定子铁心轭部整体的平均温度不高;到达励端氢气由于温升的影响,冷却效果下降,同时轭部较小半径部位与齿部相连,因此看到图7中温度最高的位置。

图7

定子铁心齿部温度场如图8所示,定子铁心齿部的温度走势与轭部的温度走势大致相同,汽端温度最低,沿轴向温度逐渐升高,励端温度最高,温度值约为372K。径向风路部分的温度值低于周围位置的温度值;由于齿部的热源强度相对较大,因此温度增加走势较快,大约在冷却气体行程1/3位置处速度已经开始大范围、大幅度增加。

图8

4.定子线圈及冷却水温度分析

定子铜线圈采用水冷,空心线圈中水流速在2.06m/s~2.11m/s之间浮动。虽然定子铜线圈的热源强度很大,但是水的蓄热能力强,冷却效果很好,流经铜线圈的冷却水可以将大量的热及时带走,以此来保证铜线圈绝缘的温升不会过高。定子线圈由上层线圈和下层线圈组成,上层线圈的空心股线行数×列数为4×6,下层线圈的空心股线行数×列数为4×5,本机定子共有48个槽,模型是整机机组1/32,因此定子模型含有一个完整的定子槽和一个半个定子槽。由图9线圈入口截面温度场可知,入口处冷却水的温度值为318K,铜线圈的温度和冷却水的温度相近,温度值约为319 K。线圈出口截面温度场如图10所示,冷却水温度由入口向出口方向逐渐增加,温度在出口处达到最大值,最大值约为350K;铜线圈的温度分布与冷却水的温度分布相似,线圈的最低温度在励端,沿着水流方向铜线圈温度均匀增加,最高温度出现于汽端,温度值约为354K。

图9

冷却水温度分布与铜线圈温度分布情况大致相同,但在数值上有细微的差别。图10所示可以明显看出出口水温与铜温度的差别,铜线圈的温度略高于冷却水的温度,使得铜线圈产生的热量不断的被冷却水带走,靠近空心线圈部分的冷却效果较好,使得该部分的温度要低于远离空心线圈的铜的温度,在远离空心线圈方向温度逐渐增加,但数值相差不大。

图10

四极汽轮发电机结论

建立四极水氢氢冷汽轮发电机定子温度场模型,根据求解条件,计算得到冷却介质和固体部件的温度场分布如下:

1)定子汽端压板温度最大值约为354K;励端为气体行程末端,使得励端齿压板温度明显高于汽端齿压板温度,最大温度值约为368K,压板外侧为对流换热面,温度降低。

2)汽端磁屏蔽的最高温度值为362K,励端磁屏蔽的最高温度值为383K,设计方试验得到的磁屏蔽最高温度值为385K,误差在允许的范围内。

3)定子铁芯整体沿冷却气体行程逐渐升高,而齿部轴向温升较快;轭部温度场最高温度出现于冷却风路行程末端靠近齿部部分,温度值约为370K;齿部最高温度出现于径向风路前端,温度值约为372K。

4)定子中冷却水的最高温度出现于出口处,最高温度值为350K,与试验值353K的误差在允许的范围内;定子线圈的温度分布与冷却水的温度分布相似,最高温度值为354K,与试验值362K的误差在允许的范围内。 2100433B

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读