《一种含钒钛动车组车轴用钢及其热处理工艺》的目的在于提供一种抗拉强度750~900兆帕、屈服强度≥600兆帕、-40℃千伏2≥150焦,同时要求具有优异的抗疲劳性能的高速动车组车轴用钢及其热处理工艺。
《一种含钒钛动车组车轴用钢及其热处理工艺》按重量百分比含有C:0.24~0.30,Si:0.20~0.40,Mn:0.70~1.00,Cr:0.90~1.20,Ni:0.70~1.30,Mo:0.20~0.30,Cu:0.10~0.60,Zr:0.01~0.04,V:0.04~0.08,Ti:0.015~0.030,Ca:0.001~0.005,P≤0.010,S≤0.008,T[O]≤0.0015,Als:0.015~0.045,余为Fe和其它不可避免的杂质;所述钢的组织为回火索氏体 少量下贝氏体,其中,车轴近表面回火索氏体含量为100%,车轴1/2半径处回火索氏体含量在80~90%。进一步地,按重量百分比含有C:0.29,Si:0.24,Mn:0.91,Cr:0.97,Ni:0.87,Mo:0.2,Cu:0.56,Zr:0.03,V:0.04,Ti:0.021,Ca:0.003,P:0.005,S:0.001,T[O]:0.0006,Als:0.035,余为Fe和其它不可避免的杂质。进一步地,其纵向力学性能达到:Rm:750兆帕~900兆帕,ReL或Rp0.2≥600兆帕,A≥18%,Z≥40%,-40℃纵向冲击吸收功千伏2≥150焦;断裂韧性KQ值≥120兆帕·米1/2;光滑试样的旋转弯曲疲劳极限RfL≥375兆帕,缺口试样的旋转弯曲疲劳极限RfE≥310兆帕,缺口敏感性RfL/RfE≤1.15;过盈量为0.04毫米试样的微动疲劳极限≥215兆帕;盐雾腐蚀14循环周次试样的腐蚀疲劳极限为≥275兆帕;钢材的奥氏体晶粒度大于等于8.0级。上述含钒钛动车组车轴用钢的热处理工艺,包括如下步骤:(1)正火:将含钒钛高速动车组车轴用钢加热至温度870~900℃,在该温度段加热保温时间按1.2~1.7分钟/毫米计算,空冷;(2)淬火:将含钒钛高速动车组车轴用钢加热至温度850~880℃,在该温度段加热保温时间按1.5~2.0分钟/毫米计算,随后冷却;(3)回火:将含钒钛高速动车组车轴用钢加热至温度620~680℃,在该温度段加热保温时间按2~2.5分钟/毫米计算,随后空冷至室温。进一步地,步骤(1)-(3)中加热速度均为50~100℃/小时。进一步地,步骤(2)中,在淬火槽中,通过喷嘴对车轴进行水下喷水快速水冷至室温。进一步地,冷却速度控制在1.5~2.5℃/秒。进一步地,步骤(1)中以80℃/小时加热至温度870℃,加热保温时间300分钟,空冷。进一步地,步骤(2)中以80℃/小时加热至温度860℃,加热保温时间270分钟,快速水冷;和/或,步骤(3)中以80℃/小时加热至温度650℃,加热保温时间420分钟,空冷。进一步地,其用于含钒钛动车组车轴用钢的制造工艺,包括步骤:电弧炉或转炉冶炼→LF炉精炼→RH或VD真空脱气→连铸→铸坯加热炉加热→车轴坯轧制→车轴坯锻造→毛坯车轴粗车→车轴齐端面加工→正火 调质热处理→车轴外圆精车加工→车轴内孔镗削加工→外圆磨削→探伤。
《一种含钒钛动车组车轴用钢及其热处理工艺》与2016年6月以前的技术相比具有强度高、抗疲劳性能优良的优点。可获得700兆帕以上的高强度,其塑性和韧性明显优于商业钢,其疲劳极限要显著高于商业钢,呈现出良好的强度韧性配合及优异的抗疲劳性能。其中:Rm:750兆帕~900兆帕,ReL或Rp0.2≥600兆帕,A≥18%,Z≥40%,-40℃纵向冲击吸收功千伏2≥150焦;断裂韧性KQ值≥120兆帕·米1/2;光滑试样的旋转弯曲疲劳极限RfL≥375兆帕,缺口试样的旋转弯曲疲劳极限RfE≥310兆帕,缺口敏感性RfL/RfE≤1.15;过盈量为0.04毫米试样的微动疲劳极限≥215兆帕;盐雾腐蚀14循环周次试样的腐蚀疲劳极限为≥275兆帕;钢材的奥氏体晶粒度大于等于8.0级;高速动车组车轴“正火 调质(淬火 高温回火)”热处理后钢的组织为回火索氏体 少量下贝氏体,其中,车轴近表面回火索氏体含量为100%,车轴1/2半径处回火索氏体含量在80~90%。