实施例1
如图1所示,该实施例的基于含相变凝聚均流技术的湿式电除尘系统,包括脱硫吸收塔1、除雾器2、吸收塔出口烟道3、湿式电除尘器5和除尘器出口烟道6,所述除雾器2设置在脱硫吸收塔1顶部,所述吸收塔出口烟道3位于脱硫吸收塔1上方且其入口连接除雾器2的出口,吸收塔出口烟道3连接所述湿式电除尘器5,湿式电除尘器5的出口连接除尘器出口烟道6的入口,除尘器出口烟道6的出口连接烟囱。上述部件中,脱硫吸收塔1用于对待处理烟气进行脱硫;除雾器2用于对脱硫后的烟气中的雾滴和部分烟尘进行去除;湿式电除尘器5用于对烟气中的剩余烟尘进行去除。
为了克服2014年9月之前的湿式电除尘器对某些气溶胶颗粒或粒径过小的颗粒物荷不上电导致的在阳极区域上无法实现除尘的情况,在吸收塔出口烟道3与湿式电除尘器5之间安装有相变凝聚均流室4;相变凝聚均流室4是由多根PFA毛细管排列组成的U型管束,组成该U型管束的多根PFA管的入口均连接至一个冷却水入口9,多根PFA毛细管的出口均连接至一个冷却水出口10。相变凝聚均流室4的上述结构能够实现将湿式电除尘器入口处的烟气冷凝相变,促进微细粒子凝聚变大,并使烟气分布均匀;能够有效解决常规湿式电除尘器中颗粒物粒径过小难以荷电的问题,提高湿式电除尘器的除尘效率。
优选的,组成U型管束的多根PFA毛细管均热熔焊接在同一块PFA管板上从而成为一个整体。
优选的,U型管束由多根PFA毛细管11按照错列或排列组成,且相邻的PFA毛细管11的管中心距离为20~30毫米。PFA毛细管11的规格为或或者其他相近规格,这样的结构使得相变凝聚均流室4就具有很好的烟气均流分散效果,且阻力≯100Pa。当然,也可以选用其他与或者相近规格的PFA毛细管按照错列或顺列排列组成U型管束。
上述U型管束的结构设计使得烟气均流分散,同时,配合外部冷却介质的通入,能够精确控制饱和烟气的相变度,使烟气降温2~4℃,其中的亚微米级粒子有效凝聚、长大,进一步进入湿式除尘器后,荷电能力提高,进而大大提高湿式除尘器5的除尘效率,保证整套系统出口烟尘浓度≯5毫克/立方米。
优选的,湿式电除尘器5中的阳极管束为正三角形排列,该正三角形的边长为0.3~0.5米,高度为2.0~6.5米。传统的阳极管束为六边形排列,烟气有效通流面积较小,《一种基于含相变凝聚均流技术的湿式电除尘系统及工艺》在同样流通截面下烟气通流面积增加,流速降低,延长停留时间,有利于除尘,同时集尘极表面水膜均匀稳定,不产生断流和干区;
湿式电除尘器5中的阳极管束的材料选用环氧树脂复合材料。
湿式电除尘器5的进气室上开有烟气进口和底部排尘口;湿式电除尘器5的导流支撑板用于降低烟气流动阻力;湿式电除尘器5的冲洗装置喷嘴与上部阴极吊架的距离为0.3~0.5米,喷嘴之间的距离为阳极管束单管的2倍以上。湿式电除尘器5的上下气室均设有阴极框架,并用绝缘箱固定;电晕线分别固定于上、下气室的阴极框架上。上述结构稳定性好,电晕线不易发生摆动,在电场气速1.5~4米/秒,能够实现对经过相变凝聚均流室4后上升气流中的颗粒有效荷电。
《一种基于含相变凝聚均流技术的湿式电除尘系统及工艺》的装置的工作原理如下:待处理烟气自下而上依次经过脱硫吸收塔1、除雾器2、吸收塔出口烟道3、相变凝聚均流室4、湿式电除尘器5和除尘器出口烟道6后,由烟囱排出。具体是,待处理烟气经脱硫吸收塔1脱硫后,除雾器2对脱硫吸收塔1出口烟气中的部分烟尘和雾滴脱除,烟气首先进入相变凝聚均流室4,即从U型管束中自下而上通过,发生冷凝相变,烟气中的微细颗粒物快速凝聚变大,同时,烟气被均匀分散;烟气继续通过湿式电除尘器5,带电颗粒物附着在湿式电除尘器5中的阳极管束表面;经湿式电除尘器5排出的净化后的烟气从除尘器出口烟道6排入烟囱。
在上述过程中,饱和的湿烟气通过相变凝聚均流室4后凝结出的水分落入水处理池7;湿式电除尘器5定期冲洗后的冲洗水也落入水处理池7。水处理池7中收集的水由冲洗泵8送至脱硫吸收塔1顶部作为除雾器2的冲洗水使用,达到回收水的再次利用,节约资源。
实施例2
如图2所示,该实施例给出了一种基于含相变凝聚均流技术的湿式电除尘方法,该方法包括如下步骤:
步骤1,将待处理烟气经脱硫吸收塔进行脱硫;
步骤2,对步骤1得到的烟气中的雾滴和部分烟尘通过除雾器2进行去除;
步骤3,采用湿式电除尘器5去除烟气中的烟尘;
在所述步骤3之前,还包括将步骤2得到的烟气通入相变凝聚均流室4进行冷凝并均匀分散的步骤。
除此之外,还包括将烟气经冷凝后得到的水回收的步骤。