造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

压缩检测压缩检测方法

2022/07/16186 作者:佚名
导读:图1所示为压缩试验的典型布置方式。在压缩试验中,所采用的均匀位移速率方式与拉伸试验相同,当然加载方向是不同的。最为普遍采用的试样形状就是高径比L/d为1~3的圆柱体。然而,有时也使用高径比L/d高达10的圆柱试样,采用此值的主要目的就是为了精确确定材料压缩过程中的弹性模量。有时也使用横截面形状为正方形或矩形的试样进行压缩试验。 选择试样的高度必须予以综合考虑。如果L/d的值相对较大,则试样容易弯曲

图1 图1所示为压缩试验的典型布置方式。在压缩试验中,所采用的均匀位移速率方式与拉伸试验相同,当然加载方向是不同的。最为普遍采用的试样形状就是高径比L/d为1~3的圆柱体。然而,有时也使用高径比L/d高达10的圆柱试样,采用此值的主要目的就是为了精确确定材料压缩过程中的弹性模量。有时也使用横截面形状为正方形或矩形的试样进行压缩试验。

选择试样的高度必须予以综合考虑。如果L/d的值相对较大,则试样容易弯曲。如果发生了弯曲,则试验结果对于测量材料的基本压缩力学行为就变得毫无意义了。试样的弯曲会受到试样几何形状的难以避免的小缺陷的影响,也会受到试样在万能试验机上放置时的平直度的影响。例如,试样的两端应该几乎是平行的,但是从来不会达到非常理想的程度。

反之,如果L/d较小,试验结果会受到试样两端细节部分的影响。具体而言,当试样被压缩时,直径会由于泊松效应而增加,但摩擦会阻碍试样两端的运动,结果导致试样出现了鼓形。这种鼓形可以在试样的两端进行合适的润滑而达到最小化。对于在压缩过程中能够发生很大塑性变形的材料,选择太小的L/d值可能会导致试样的力学行为完全受试样的两端所影响,结果试验无法测出材料的基本压缩力学行为。

考虑到L/d较小可以避免试样弯曲,而L/d较大可以避免试样两端的影响,因而对于塑性材料而言,一个合理的折中方案是L/d=3。对于脆性材料而言,L/d=1.5或2是较为合适的,此时试样两端的影响较小。

图2 图2和图3所示为不同材料压缩试验前后的一些例子。低碳钢表现出了典型的塑性行为,具体而言,低碳钢发生了很大的变形而没有发生断裂。但灰铸铁和混凝土都表现出了脆性行为。铝合金虽然发生了很大的变形,但最终还是发生了断裂。在压缩过程中的断裂,通常都发生在倾斜平面上或圆锥面上 。

图3

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读