造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

变结构鲁棒控制变结构鲁棒控制设计

2022/07/1679 作者:佚名
导读:变结构鲁棒控制的特点就在于控制量的非线性切换。这样的切换控制需要两方面的设计 : 一 是选择切换面,如全状态滑模变结构的切换面一般是,部分状态滑模变结构的切换面只是一部分状态反馈的线性组合,而非滑模变结构的切换面一般是某一个状态反馈; 二是切换控制律,它一般表示为其中 K(x)为切换项增益,f (s(x))为切换控制器,常用的切换控制器有理想继电器、滞环继电器等是最常用的切换控制律。 变结构鲁棒控

变结构鲁棒控制的特点就在于控制量的非线性切换。这样的切换控制需要两方面的设计 :

一 是选择切换面,如全状态滑模变结构的切换面一般是,部分状态滑模变结构的切换面只是一部分状态反馈的线性组合,而非滑模变结构的切换面一般是某一个状态反馈;

二是切换控制律,它一般表示为其中 K(x)为切换项增益,f (s(x))为切换控制器,常用的切换控制器有理想继电器、滞环继电器等是最常用的切换控制律。

变结构鲁棒控制全状态滑模面设计

滑模面的设计是滑模变结构控制的核心问题。滑模面设计的好坏决定系统的性能,它同时还关系到系统的稳定性和抖振的大小。滑模面的设计方法较多,具有代表性的方法有基于降阶的滑模面设计、基于线性矩阵不等式(LMI)的滑模面设计、时变滑模面设计等。

变结构鲁棒控制非滑模变结构切换面设计

非滑模变结构切换面的设计具有更强的灵活性,同时也需要利用多种手段来分析它们。学者 Boiko、Huang、Oliveira、Plestan 提出了多种切换面设计方法,也考虑了切换面与系统的稳定关系。

图2 滞环继电器补偿控制

图 2、图3列出了 Boiko 提出的两种控制方法。Boiko 采用描述函数(DF)法和 LPRS 法分析它们的稳定性。图 2控制器将系统输出作为切换面,Boiko 利用 DF 法分析滞环继电器和 W(jω)的幅相频率特性。若无法得到期望的性能,则设计补偿环节,调节 W(jω)的幅相频率特性的分布。图 3将系统输出 y(t)及其导数y'(t)作为控制器的两个切换面,通过改变两继电器增益,可使其描述函数在第二象限旋转,从而改善系统控制精度。

图3 多输入继电器控制

变结构鲁棒控制切换控制器设计

切换控制器关系到系统鲁棒性和抖振特性。常用的切换控制器类型有理想继电器、饱和函数、滞环继电器、2-SMC等。

(1) 理想继电器是最常用的切换控制器,系统状态一旦穿越切换面,理想继电器就输出反向控制量,因此具有很好的鲁棒性,但它容易受到噪声的影响,且易引入较快的抖振频率。

(2) 饱和函数抑制抖振的效果明显,但它可能使滑模控制失去鲁棒性。

(3)滞环继电器使切换控制器变得相对迟钝,增大了切换面宽度,降低了控制精度,但通过改变迟滞量可调节抖振幅度和频率。

(4)2-SMC 具有多个控制参数,通过改变这些参数可更加灵活地调节控制器的鲁棒性和抖振特性,抖振频率既能降低也能提高。 2100433B

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读