为了减轻负载,在航天、航空等现代工业制造中,越来越多地采用薄板多栅格焊接结构。受限于多栅格结构的复杂性以及结构中板材的厚度,现有的常规无损检测技术难以实施有效的焊接质量评定。因此,薄板多栅格焊接结构的质量检测一直是亟待解决的技术难题。针对这一技术问题,本项目提出采用超声Lamb 波技术实现声波一处激发、多缝检测的方法,并开展了复杂结构焊接缺陷超声检测机理及缺陷信号识别的研究工作。首先,采用基础实验和模拟仿真相结合的研究方法,探索了超声Lamb 波在复杂结构中的检测机理。相关研究主要包括:分析了不同模态超声Lamb波的激励条件、波结构,研究了不同条件下的回波模态识别;定量及定性研究了多栅格焊接结构中超声Lamb波的传播行为及与缺陷体的作用过程;分析了声波在栅格结构几何尺寸突变处及缺陷体处发生的反射及透射行为;通过模拟仿真实现了超声Lamb波传播过程的可视化,并对典型缺陷体超声Lamb波检测回波信号进行了预测;最终选择了行之有效的超声Lamb模态及频率。以检测机理的理论研究为指导,研究了超声Lamb波信号中的缺陷特征信息的识别方法,主要包括:基于HHT的缺陷尺寸量化测量;噪声信号抑制及缺陷信号复原;基于相位信息识别的走时提取;基于声影技术的栅格结构缺陷快速检测方法;高灵敏度线聚焦超声检测方法等。研究结果表明:HHT对于识别栅格结构检测的Lamb波模式具有效性,同时IMF1分量瞬时幅值的峰值对缺陷尺寸具有较好的表征效果;基于子波相关的改进小波噪声抑制具有更好的噪声去除效果,且具有更好的鲁棒性;基于改进维纳滤波技术的处理技术能有效提取信号的相位及走时信息;基于声影技术的缺陷快速检测方法,能够实现栅格结构中3条焊缝的同时检测。本项目的研究成果为薄板复杂结构构件难于实施无损检测的问题提供解决思路,进而为保证该种构件的生产质量及使用安全可靠性奠定基础。对于生产中的质量控制、节约原材料、改进工艺以及保障安全运行都有着极为重要的现实意义。 2100433B