在声波长范围内,测量声强以往一直是通过测量自由场平面波条件的声强及用其与声强的关系计算得到,对于其他声场条件下的声强则无法测量。在过去虽曾先后发明过一些企图直接测量声强的方法,但均因缺乏实用价值而未被采用。70年代以来,由于数字技术和微处理机应用的发展,一些能直接测量声强的实用的仪器设备,如声强计、实时声强分析仪等已陆续问世(见声强仪)。用这些仪器测量声场中某点声强的原理是,通过测量该点附近相邻两点的声强,以其声强和之半即平均声强近似地表示该点的声强,声强差即声强梯度近似地表示该点的质点速度,再求其乘积和对时期求平均。此方法的主要误差来源是上述二近似表示造成的,此与两点的间距Δr 和圆波数k 有关。 例如用两个直径12mm的传声器组成的声强测量探头,当其间隔Δr=6mm时,其测量误差在波长低于3.4cm或高于86cm时,将大于 1dB。这说明这种声强测量仪器不适用于短波声强的测量。
对于液体中短波声强的测量,常用的方法有量热法和光学法等。
量热法的测量原理是用易吸收声能的固体材料如石蜡等制成的小球作为声强测量探针的敏感元件,当将它置于声场中时,小球吸收的声能转化为热,使其温度升高,用热敏电阻或温差电偶等器件测出其温度变化而得到声强。由于敏感元件、测温器件等的灵敏度低及稳定性差,适宜于测量较大的声强值,另外此法测得的是一定时间内的平均声强。
光学法是利用短波声光致衍射现象以测量透明液体媒质中的平均声强。有声波存在时,媒质的密度ρ 在空间形成周期性变化,构成一相位光栅,当光线与声波垂直相交时,就产生光衍射现象,此时短波声强I与光衍射条纹变化有如下关系
式中Λ 为光波波长,с为液体中的声速,Л为光波通过声场的深度,a为贝塞耳函数Jm(a)=0的根(a=2πΔrl/Λ)。用此法只能测量 1~10kW/m2(即0.1~1W/cm2)左右或更大的声强。 目前还有用光全息术测量由声辐射使自由液面隆起的程度以确定声强,此法测量声强的范围约为3~3000W/m2(即0.3~300W/cm2)。