造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

大功率并网风电变流器状态监测技术变流器功率器件的老化失效机理

2022/07/16240 作者:佚名
导读:大功率并网风电变流器状态监测技术老化失效形式及机理 在风电机组的背靠背变流器拓扑结构中,不论是陆上风机或者海上风机,双馈风电机组还是永磁直驭风电机组,由于其机侧变流器都可能长期运行于较低的频率,此时器件结温波动较为显著,严重影响着其功率模块的功率循环能力,给风电机组的可靠运行带来了不可忽视的安全隐患。 如图《风电变流器模块的功率器件结构及材料属性》为目前广泛应用于风力发电变流器的塑封型功率模块剖而

大功率并网风电变流器状态监测技术老化失效形式及机理

在风电机组的背靠背变流器拓扑结构中,不论是陆上风机或者海上风机,双馈风电机组还是永磁直驭风电机组,由于其机侧变流器都可能长期运行于较低的频率,此时器件结温波动较为显著,严重影响着其功率模块的功率循环能力,给风电机组的可靠运行带来了不可忽视的安全隐患。

风电变流器模块的功率器件结构及材料属性 如图《风电变流器模块的功率器件结构及材料属性》为目前广泛应用于风力发电变流器的塑封型功率模块剖而图,从图中可以看到其由多种不同热膨胀系数(Coefficient of Thermal Expansion,CTE)的材料组成。在热循环过程中,由于热膨胀系数CTE的不匹配必将导致其疲劳应力增加,从而引起其焊层破裂和焊料层空洞,进而影响到各材料层之间的电气连接,使得沿热传导路径的热阻增加。在整个寿命周期,功率半导体器件的结温水平呈递增趋势,最终导致器件老化失效。

变流器IGBT模块的失效机理主要包括铝键合线脱落、焊层疲劳、键合线根部断裂和铝金属化的重构。其中,金属化的重构现象可由功率模块功率循环后观察到,由于铝与硅芯片热膨胀系数的差异,经过反复的温度循环冲击,它们之间的热机械应力会使得铝金属化而形成颗粒状的粗糙接触而,减小了金属有效接触而积,从而导致其电阻增大 。铝键合线脱落会削弱功率模块的导电性能,焊层疲劳会引起导热性能的下降 。另外,铝键根部断裂现象通常也可在经过长时间功率循环测试的IGBT模块中观察到。导致该失效的主要原因是在焊接过程中,由于超声波振动导致铝键合引线根部产生裂缝,且与铝键合引线脱落相比,其断裂过程更慢。采用新一代的压接式封装技术可避免或者减少使用铝键合线和焊层,有研究表明,IGBT模块的压接式封装结构至少可以减小一个数量级的疲劳寿命损。

此外,该技术也可以把金属基板直接压在半导体芯片上,这种结构无需连接传统的散热器,并可以同时传导热能和电能。与塑封IGBT相比,采用压接式IGBT模块不仅可以通过两侧散热提高功率密度,而且去除了键合引线及焊层连接的结构方式,因此消除了键合引线脱落、断裂或焊料层疲劳的失效模式,器件的可靠性显著提高。然而,这种新的封装形式也带来了和其结构相关的新的失效形式。压接式IGBT的每个栅极通过装有弹簧的引线连接,弹簧在功率循环的过程中受到反复的压缩/膨胀而产生疲劳,引起弹簧应力损伤,经过一定的循环次数,最终也会老化失效,影响风力发电变流器的运行可靠性。

除热应力外,当器件在超过额定电压或电流工作时,有可能产生过电应力而造成器件损坏。在过电应力作用下,器件局部将会过热,在该热点温度达到材料熔点时,材料开始熔化并导致开路或短路故障,从而损毁器件。过电应力可分为过电压应力和过电流应力,过电压包括栅极过电压、集电极-发射极过电压及杂散电感过电压等,过电流包含擎住效应及短路现象等 。

大功率并网风电变流器状态监测技术疲劳寿命评估方法分析

针对风电变流器可靠性低、维护成木高的严峻现实,如何评估其功率模块的剩余寿命是进行状态检修和运行维护的关键。目前已有一些研究提出了用以描述功率模块老化进程的寿命模型,如LESIT项目利用不同制造商的IGBT模块,通过功率循环实验,发现器件的失效主要与结温平均值,及其波动幅值有关。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读