近年来,风能在世界能源结构中地位越来越突出,风电将逐步成为火电、水电之后的第三大常规能源。随着我国大型海上风电建设规划相继启动和现运行的大部分风电机组质保期逐渐超出或邻近超出,高故障发生率和高运维成本的现状越来越引起风电运营商、制造商和第三方运维公司等机构的关注。
相比陆地风电机组,海上风电机组将面临更恶劣的运行环境和更高的运行维护成本。据统计,海上风电机组的维护成本至少为陆上风电机组的2 倍,运维成本高达经济收入的30%~35%,其中约25%~35%为定期维护费用,65%~75%为事后维修费用。随着单机容量不断增加,大功率风电机组的复杂性程度增加,将会面临更高的故障率和运维费用。为了降低故障率和减少维修费用,开展风电机组的状态监测和故障诊断研究,对及时掌握风电机组运行状态,及早发现潜在故障征兆,降低故障率,减少运维成本,从而保证风电机组安全高效发电运行有着重要学术研究意义和工程应用价值。
鉴于风电机组对状态监测和故障诊断的急迫需求,国内外相继出台了标准规范,如2009 年欧盟推出了关于《风力机及其部件的机械振动测试与评估标准VDI3834》;2011 年国家能源总局提出《风力发电机组振动状态监测导则》。
上述标准主要是针对风电机组关键部件的振动特征量制定的规范要求,对于实现全面的风电机组状态监测和故障诊断的要求还远远不够。与传统火电、水电机组相比,风电机组在高空运行,是多部件协同工作的复杂系统,监测特征量类型多、数量大,受风速大小和风向的不确定性以及变速恒频发电控制的约束,运行状态通常在不同工况之间随机频繁切换,各类特征量随机波动范围较宽,利用单一或几个特征量采用传统状态监测和故障诊断方法,难以得到风电机组真实的运行状态和实现准确故障定位。基于上述风电机组特殊性,有必要了解风电机组状态监测和故障诊断领域研究现状,综述该领域的研究方法和成果,进一步促进该领域研究的开展。
目前,风电机组状态监测和故障诊断领域的研究处于起步阶段,已有的研究成果中,对于整机的研究侧重于状态评估和故障预测,对于机组的关键部件研究侧重于故障诊断。本文首先介绍风电机组的运行环境及其故障统计情况;其次,对整机状态评估和故障预测研究现状,从统计分析、多参数融合和故障预测角度进行综述;再次,重点介绍和评述风电机组关键部件故障诊断方法的研究现状;最后,结合当前研究现状和存在的问题,指出风电机组状态监测与故障诊断技术的发展趋势。