大型混流泵Alford效应下的稳定性问题已成为国防装备和大型水利工程急需解决的难题之一,研究间隙流体激振机理是解决这类流体激振问题的基础研究。 本项目从探索混流泵非均匀叶顶间隙流场的物理特性出发,研究了间隙流体激振机理及其引发的转子动力学响应。项目创建了涡动流场的“多区域动态滑移方法”,并综合利用先进PIV试验手段和精细数值计算,研究了非均匀轮缘间隙下叶片表面静压、湍动能分布以及轮缘泄漏流的流态特征和泄漏涡的卷吸效应,建立了非均匀间隙流动与不稳定特征结构的关系,从非均匀轮缘间隙对内部流场的扰动揭示能量损失的产生机理,阐明了能量性能下降的本质原因。采用涡核提取方法和涡量矩理论研究了流量工况和偏心距对非均匀轮缘间隙流场物理结构和叶片载荷的影响规律,分析了非均匀轮缘间隙流场的非定常特征,探讨了不同流量工况、偏心距、涡动频率比对瞬态Alford力的影响规律,揭示了间隙流体激振的产生机理,构建了混流泵Alford力的数学模型。建立了考虑Alford力作用的耦合动力学模型,分析了流体力对转子系统模态频率、临界转速的影响,研究了不同因素下非均匀间隙流体激振力引发的动力学效应,测量绘制了表征转子运动特性的轴心轨迹图,为抑制或消弱Alford效应的不良影响、提高和改善混流泵的水力性能和运行稳定性提供理论依据。 项目研究成果不仅可以加深和丰富人们对水力机械中Alford效应的理解,而且可以为相关水力机械的动力学稳定性设计提供参考。同时,间隙流体激振机理的研究对于控制或消弱核电、火电和国防装备等大型机组的振动失稳具有重要的战略意义。 项目研制了系列高性能导叶式混流泵水力模型,特种混流泵产品振动噪声低,水力损失小,高效范围宽,应用范围广,取得了显著的经济和社会效益,推动了我国泵行业减振降噪技术的进步,荣获了2016年首届中国军民两用技术创新应用大赛银奖。 2100433B