研究实际电路,往往将其抽象为电路模型,用电路理论的方法分析计算出电路的电器特性。
根据实际电路的几何尺寸(d)与其工作信号波长(λ)的关系,可以将它们分为两大类:
(1)集总参数电路:满足d<<λ条件的电路。
以电路电气器件的实际尺寸(d)和工作信号的波长(λ)为标准划分,实际电路又可分为集总参数电路和分布参数电路。
满足d<<λ条件的电路称为集总参数电路。其特点是电路中任意两个端点间的电压和流入任一器件端钮的电流完全确定,与器件的几何尺寸和空间位置无关。
不满足d<<λ条件的电路称为分布参数电路。其特点是电路中的电压和电流是时间的函数而且与器件的几何尺寸和空间位置有关。
(2)分布参数电路:不满足d<<λ条件的电路。
在电路理论中,对分布参数电路进行分析时:首先是建立模型。建立模型采用的是无限逼近法。这种方法是将分析对象(例如均匀传输线)设想为许多个无穷小长度元dχ。由于长度元dχ是无穷小量,在这些长度元的范围内参数可以集中。于是,每个长度元可以抽象成一个集总参数电路。而这些集总参数电路级联而成的链形电路就成为整个均匀传输线的电路模型。
显然,只有无穷小长度元dχ的个数为无限多时,链形电路才能准确地代表均匀传输线。
接着是根据模型写方程。方程是参照长度元dχ抽象成的集总参数电路,利用KCL和KVL(见基尔霍夫定律)写出的。它是一个偏微分方程组。
最后是解方程求解答,再根据解答讨论电路(即传输线)的性能。如果建模完成后,再用合适的实际电阻器、电感器和电容器来实现,便可得到一个线性尺寸很小的称为人工线的实际链形电路。这就提供了对传输线进行实验研究的条件。人们可以在实验室内利用很短的人工线实现对长达几百公里,甚而上千公里的输电线上的各种工作状态的观察和各种数据的测量。
分布参数电路作为一个电磁系统当然还可采用电磁场理论进行分析。这样做虽然严格与精确,但并不方便,因为求解电磁场方程组要比求解电路方程组困难得多。因此,通常是采用电路理论来分析分布参数电路。传输线传送能量或信号的各种传输线的总称。其中包括电力传输线、电信传输线、天线等。传输线又称长线。由于它具有在空间某个方向上其长度已可与其内部电压、电流的波长相比拟,而必须考虑参数分布性的特征,所以是典型的分布参数电路。在电路理论中讨论传输线时以均匀传输线作为对象。均匀传输线是指参数沿线均匀分布的二线传输线,其基本参数,或称原参数是R0、L0、C0和G0。其中R0代表单位长度线(包括来线与回线)的电阻;L0代表单位长度来线与回线形成的电感;C0和G0分别代表单位长度来线与回线间的电容和漏电导。这些参数是由导线所用的材料、截面的几何形状与尺寸、导线间的距离,以及导线周围介质决定的。在高频和低频高电压下它们都有近似的计算公式。