1.4.2 采用频域响应判据设计控制器 2 高级过程控制 2.1 高级过程控制系统结构 2." />
1 过程控制的基本概念
1.1 工业过程控制系统
1.2 PID 控制
1.2.1 比例作用
1.2.2 积分作用
1.2.3 微分作用
1.2.4 闭环系统的稳定性
1.3 控制器设计的时域方法
1.4 控制器设计的频域方法
1.4.1 基于频域响应"para" label-module="para">
1.4.2 采用频域响应判据设计控制器
2 高级过程控制
2.1 高级过程控制系统结构
2.1.1 直接合成
2.1.2 内模控制近似模型调整规律
2.2 过程控制系统的积分饱和现象和抗饱和方案
2.2.1 输入受限
2.2.2 反馈补偿
2.2.3 可实现参考值
2.2.4 条件积分
2.3 先进PID控制器参数调整
2.3.1 图表法
2.3.2 两点法
2.3.3 面积法
2.4 继电器反馈
3 复杂动态系统的控制器设计
3.1 复杂过程动态特性
3.2 时间延迟系统的控制
3.2.1 常规反馈控制器设计
3.2.2 Smith预估器
3.2.3 改进的Smith预估器
3.3 负响应系统
3.3.1 负响应系统的控制
3.3.2 负响应补偿
3.4 开环不稳定系统
3.4.1 控制系统设计的难点
3.4.2 两步法设计
4 复杂控制系统
4.1 基本概念
4.2 串级控制系统
4.2.1 串级控制的基本原理
4.2.2 串级控制器参数调整
4.2.3 串级控制系统的防积分饱和
4.3 前馈控制
4.3.1 前馈控制器的设计
4.3.2 实际中需要注意的事项
4.3.3 反馈/前馈控制
4.4 比值控制
4.5 单个输入控制多个输出
4.6 多个输入控制单个输出
4.7 推断控制
4.7.1 反馈控制方法
4.7.2 串级控制
4.7.3 基于估计器的控制
4.7.4 推断控制
5 工业过程系统的经验建模与辨识
5.1 基础概念
5.1.1 过程辨识的基本定义
5.1.2 经验建模的原则
5.2 最小二乘法
5.2.1 线性方法
5.2.2 线性化模型
5.2.3 加权最小二乘法
5.2.4 递推最小二乘法
5.2.5 指数型遗忘最小二乘法
5.3 傅里叶理论
5.3.1 傅里叶变换
5.3.2 傅里叶变换的性质
5.3.3 离散傅里叶变换(DFT)
5.3.4 快速傅里叶变换(FFT)
5.4 描述函数
5.4.1 基本概念
5.4.2 描述函数估计
5.4.3 典型的非线性环节
5.4.4 极限环
6基于阶跃响应的参数辨识
61阶跃响应辨识的基本概念
62开环阶跃测试的典型方法
621LOG方法
622两点法
623面积法
63用于开环回路测试的最小二乘法
64经典的闭环回路阶跃测试
65系统在PID控制下的最小二乘法
651问题描述
652递归求解
653传递函数模型辨识
654应用和仿真实例
7基于继电测试的参数辨识
71继电反馈的基本原理
711产生稳定的振荡
712估计传递函数
713傅里叶变换法
72改进的继电反馈测试
721不对称的开关反馈
722带磁滞的开关
723带滞后的磁滞的实现
724不对称磁滞开关
73非传统的继电反馈方法
731带积分的开关反馈
732双开关测试
733开关加阶跃
8基于脉冲响应的参数辨识
81脉冲响应辨识
811基本原理
812一般理论
813简单模型形式的辨识
814从实验数据中获得矩
815从其他响应中得到脉冲响应数据
82基于脉冲响应的频率辨识
821频率响应
822频谱
83用于自调节过程的辨识
84仿真实例
9多变量过程系统的参数辨识
91多变量系统辨识的基础概念
92TITO过程闭环阶跃测试
921分散辨识
922时域辨识
923频域辨识
93一般MIMO过程的辨识
931测试过程和一般公式
932解耦辨识系统
94不对称双边脉冲辨识
95仿真举例
10多变量系统控制基础知识
101基本概念
1011输入/输出配对
1012相互关联
1013操作窗口
1014能控性与能观测性
102多变量过程模型
1021状态空间模型形式
1022传递函数模型形式
1023两种模型之间的关系
103开环分析
1031解析解
1032稳定性
1033开环传递函数分析
1034奇异性奇异值
1035动态分析
104闭环动态分析
1041多变量方框图
1042闭环传递函数
1043闭环暂态响应
1044闭环稳定性
11多变量系统的耦合性分析
111预备知识
1111控制回路耦合性的测度
1112基于耦合分析的回路配对
112相对增益序列(RGA)
1121RGA的性质
1122由第一原理计算RGA
12 MIMO过程分散控制
参考文献2100433B