鉴于现有技术中存在的问题和不足,基于恒阻大变形控制理论和锚固体系基本原理,本发明提供一种应用于软岩边坡和发震断层加固、监测、预警于一体的恒阻大变形缆索,当作用在缆索上的荷载达到设计阈值时,则设置在缆索下端的由恒阻体和套管组成的恒阻装置就可以通过恒阻体在套管内的滑移来抵抗剩余荷载产生的拉断效应,从而防止缆索被拉断破坏。
图1示意性的示出了本发明优选实施例的结构,如其所示,本优选实施例主要包括导向头1、恒阻体5、套管8、缆索7、隔板9、防滑挡板11、填充于隔板9和防滑挡板11之间的防水充填料10、承载板12、锚具13以及将缆索7固定于锚具13和恒阻体5的夹片4。应用时,如图7和图8所示,缆索7的上端通过夹片4固定于锚具13,承载板12抵顶在另设的锚墩上。
如图1和图2所示,本优选实施例的套管8呈直管结构,其内壁的下部设有楔形部801用于容置恒阻体5,楔形部801的倾斜面和套管8的内壁有一个较小的夹角L。如图1和图3、图4所示,本优选实施例的恒阻体5呈锥台结构,且恒阻体5的下端端面的直径D大于其上端端面的直径d。套管8的内径小于恒阻体5的下端端面的直径D。恒阻体5的强度大于套管8的强度,例如若恒阻体5为45号碳素钢,则套管8可以选择20号碳素钢。恒阻体5和套管8的材料、恒阻体5的侧壁和下端面的夹角、恒阻体5的长度、恒阻体5的上端端面的直径d和下端端面直径D、套管8的壁厚、恒阻体5下端端面的直径D和套管8的内径的差都与恒阻体5在套管8中滑动时的摩擦力有关,其具体选择应根据实际需求而定,因为在应用过程中,边坡下滑时,如图7和图8所示,缆索7将带动恒阻体5在套管中滑动,依靠该滑动摩擦力保证本优选实施例的恒阻效果。但是在进行恒阻体5和套管8的参数选择时,应使恒阻体5在套管8内移动时恒阻体5形状不变而套管8发生塑性变形。例如在恒阻体5采用45号碳素钢、恒阻体5上端端面的直径为93mm、恒阻体5下端端面的直径为96mm、恒阻体5长150mm、套管8采用20号碳素钢、套管8内径93mm、套管8壁厚20mm时,恒阻体5和套管8之间的恒阻力为850KN。
为了便捷高效的将缆索7固定于恒阻体5,本优选实施例的恒阻体5中设有多个供缆索7穿过并容置夹片4的通孔500。如图3和图4所示,通孔500的上端开口501位于恒阻体5的上端端面,其下端开口502位于恒阻体5的下端端面,开口501小于开口502,从图中可以得知,通孔500呈锥台结构。每一通孔500的轴线均与恒阻体5的轴线平行,每一缆索7的下端分别通过夹片4固定于通孔500中。需要说明的是,虽然本优选实施例的缆索为6根,相应地,恒阻体5的通孔500也为6个,通孔500环绕恒阻体5的轴线均布于恒阻体5中,但是本发明并不以此为限,缆索的数量、通孔的设置方式都可以根据需要做出改变。
为了防止材料缺陷或生产缺陷导致恒阻体5滑出套管8,或者恒阻体5正常滑出套管8,套管8的上端固定一防滑挡板11,例如焊接固定,防滑挡板11上设有供缆索穿过的孔,优选的是,该孔和恒阻体5的通孔500 的轴线在同一直线上。
在应用现场向软岩下索之前,已经将缆索7通过夹片4固定于恒阻体5的通孔500的下部,但是下索的过程,缆索7将可能发生往复滑动导致夹片4脱落,为避免下索时夹片4脱落,如图1和图5所示,恒阻体5的下端端面覆盖一挡板3。挡板3的中心设有一孔302,螺栓⒉穿过孔302并固定于恒阻体5下端端面的孔503中,借此将挡板3固定于恒阻体5的下端端面。挡板3的周缘设有多个孔301,孔 301与各缆索7分别对应,缆索7的下端分别穿过孔301,借此可以防止下索过程中,由于夹片4松动及缆索7裕量过小导致的缆索7不能被固定于通孔500 中。
为了防止固定本优选实施例时的泥浆或者地下水进入套管8,从而导致恒阻体5和套管8的内壁腐蚀,无法实现恒阻效果,本优选实施例的套管8的内壁上部固定一隔板9,如图1和图6所示,缆索7穿过隔板9上的孔901,隔板9、防滑挡板11、套管内壁构成的空间中填充隔水防腐材料,例如沥青、石蜡或者石蜡、沥青、黄油按一定比例进行混合的混合材料。同样优选的是,隔板9上设置的供缆索7穿过的孔901和恒阻体5的通孔500的轴线在同一直线上。
为了防止套管8及恒阻体5受腐蚀,本优选实施例的套管8的下端设有一密封的导向头1。优选的是,导向头1前端呈锥形,当然也可以呈平头锥台形,且上端面有一凹槽,锥形结构可以使得下索时阻力小较为顺利,凹槽可以减轻重量、简化结构及容置伸出挡板2的缆索7。
为了实时获得缆索7的拉力,缆索7上端的锚具13和承载板12之间设有力学传感器(图中未示出)。
如图7所示,在滑坡发生前,将本优选实施例穿过潜在滑动面ht,安装在相对稳定的滑床hc上。如图8所示,在滑坡发生过程中,当滑动力小于本优选实施例设计恒阻力(即恒阻体5和套管8之间的静摩擦力)时,主要依靠缆索7的材料变形来抵抗滑动力的增加当滑动力大于本优选实施例设计恒阻力时,恒阻体5沿着套管8发生滑移,依靠套管8的结构变形来抵抗滑动力的增加,从而防止缆索7由于岩土体大变形破坏而被拉断。
当岩土体发生大变形破坏时,会将变形能施加到缆索7上,形成缆索7的轴向拉力。当缆索7轴向拉力小于缆索设计恒阻力时,由于摩擦阻力的作用,恒阻体5与套管8之间不会发生相对位移,力学传感器上测得的作用力为缆索7上弹性范围内的轴向拉力;当缆索7轴向拉力大于等于缆索7设计恒阻力时,恒阻体5开始沿着套管8发生滑移,此时力学传感器上测得的作用力主要为恒阻力,由于恒阻力是套管8和恒阻体5之间的摩擦阻力,因此,在滑移过程中,不考虑套管8内部缺陷,恒阻力大小恒定,力学传感器测得的力学信息也应当恒定。采集数据可以绘制成如图9所示的拉力-位移曲线,其中曲线c1为传统预应力锚索的拉力–位移曲线,c2为传统非预应力锚索的拉力–位移曲线, c3为本优选实施例的拉力–位移曲线,通过曲线可以分别计算本优选实施例抵抗变形的能量和吸收变形的能量。而应用力学传感器也可以对传统预应力锚索进行力学信息的采集,由于其不存在恒阻特征,不存在能量吸收特性,因此无法对滑坡全过程变形能进行科学计算,即使滑坡发生了,变形能和滑动力大小也不得而知。
综上所述,应用本发明时,当滑动岩体从稳定状态到不稳定状态、从近滑到临滑状态时,作用在其上的滑动力逐渐增加,当滑动力超过设计恒阻力时,恒阻体发生滑移,来抵抗岩土体大变形对缆索产生的拉断效应。从监测的角度来说,本发明在滑坡发生过程中不会因为滑动力大于缆索强度而被拉断,继而丧失监测作用,而是通过恒阻体在套管体内滑移来抵剩余滑动力拉断效应,从而实现对滑坡全过程进行实时监测。可见本发明具有“抗中有让,让中有抗,恒阻防断”的力学特性,可以对滑坡灾害全过程进行监测和预警 。