首先,时间谐波和空间谐波对热的产生具有非常快速和显著的作用,此点在电机结构设计时很少提及。因为斩波电源电压的应用越来越少,要使电机旋转得更快,就必须增大电流有功分量的频率,但这有赖于电流谐波成分的大量增加。在低速电机中,因齿谐波而产生的磁场局部变化会引起发热,我们在选择金属片厚度和冷却系统时必须注意这个问题。在计算中还要考虑捆绑带的使用。
众所周知,超导材料都是工作在低温下,这就出现了两种情况:
第一是预测电机线圈绕组所使用的组合超导体中热点产生的位置。
第二是设计一个冷却系统,使之能够冷却超导线圈中的任何部分。
电机的温升计算因为需要处理很多参数而变得十分困难。这些参数包括电机的几何形状,旋转速度,材料的不均匀性,组成材料的构成,以及各部分的表面粗糙度等。由于计算机和数值计算方法的快速发展,将实验研究和模拟分析相结合,电机温升计算所取得的进步已超过了其他领域。
热模型应该是全局性的,且比较复杂,没有一般性,每一种新电机就意味着一个新模型。