永磁电机的无传感器控制也非常适用于混合动力驱动系统,不仅是因为永磁电机可以作为主传动系统的M/G,而且它还适用于其他辅助电力驱动装置。通常使用轴装编码器、旋转变压器或者安装在转子附近或气隙中的霍尔效应器件来感测转子位置。同步电机控制的总体目标是把电机本身作为传感器进行使用。Blaschke等人提出把转子磁链矢量饱和区应用到定子铁心,这样电机作为其自身位置传感器的目标就得以实现。当电机处于饱和状态时,电流传输方向(从静止坐标系到同步参考坐标系)与转子磁链矢量相平行,并且增益小于两者正交的情况,所以通过非对称性就能够确定转子的磁链方向。实际工作过程中,定子电流矢量与转子磁通矢量并行脉动,不会影响电机转矩。
同步磁阻电机的无位置传感器控制与永磁电机相似。所有控制方法都取决于对电机电流和电压的精准测量,同时也应适当考虑温度和电机参数变化造成的影响。从某些方面来讲,由于开关磁阻电机相位之间不互相耦合,可以使用非导通相来监测电感变化,所以在没有位置传感器时,开关磁阻电机的控制更为容易。
其他无位置传感器控制技术比比皆是。早在19世纪90年代早期.Wisconsin大学就提出采用外差技术对电机进行信号注入和信号检测。信号注入法已经扩展至异步电机,并且已有具体的应用,通过引入特性修正,如对转子开口槽进行修正进而引入转子漏感的空间调制。信号注入和检测技术见上图,这种信号注入方法的精度R/D转换器(轴角转换器)相似,并且精度独立于所引人的转子凸极的实际角度。
下图通过逆变器和特性修正电机(修正转子的感应电机)或典型的同步电机(同步磁阻或内置式永磁电机)的共同作用对外差过程进行了说明。wt为电机转子转速,wc为注入信号频率,外差过程把频率分量转换为±(2wt-wc),其中载波频率大约为400Hz,然而在开关频率为2kHz的逆变器中,载波频率能达到2kHz。基带信号是速率控制下电机的频率指令。低通滤波器(Low Pass Filtering,LPF)提取基带频率并用于对电流调节器(同步坐标)的反馈控制;带通滤波器(Band Pass Filtering,BPF)则从总信号中提取当前位置的调制载波信号以用于对观测器的反馈控制。
大量的研究结果表明,可以使用远离被测电机的传感器来采集电机的转子位置信息,而且这些传感器还可用于对其他信息的测量,例如安装在电池终端的电流传感器以用于交流发电机的同步整流控制。不论是从耐久性的角度还是从成本因素来考虑,都不允许在车辆交流发电机的上面或者内部安装电流传感器。交流发电机的电流纹波是整流二极管的作用结果,它含有交流发电机转子的相关位置信息,因此可以提取这些位置信息并用于有源整流器组件的控制开关。。由于其他系统,如能源和负载管理系统,需要对电池电流进行检测,所以这种方法能够真正实现传感器配置结构的最小化。反电动势观测器用于监测交流发电机的相电压信息,通过采用观察窗可以实现对转子位置的检测。在观察窗中,电池直流电流纹波与相电流相连接。发动机转速和负载的影响会使交流发电机的反电动势频率和幅值发生变化,因此需要使用一个非线性的渐近观测器来估算交流发电机的相电动势大小。这种方法可以在恒定偏移量内跟踪交流发电机的转子位置,并且具有追踪±1000Hz/s速度变化的动态能力。
基于磁链技术的永磁电机无位置传感器控制方法正日益普及。从技术的发展来看,永磁电机的无传感器技术包括感测反电动势,即直接感测120。传导驱动惰性相的反电动势,并通过对电流电压积分求解磁链的方法,还包括监测逆变器续流二极管导通时间的方法。最近Kim等人提出了一种与速度无关的磁链派生新方法。在该方法中,线速度的相关函数包含了电压和电流的测量值,以及对派生电流的划分值,得到的结果函数是与速度无关的转子角度信息,能够估算低速时的转子位置。在实验室环境中.通过此方法来控制四极无刷直流电机(转速20r/min)。