炉渣冷却过程伴随着炉渣组分的相变。炉渣由液相转变为固相,析出各种复台氧化物。在凝固过程中,首先析出的是高熔点的复合氧化物。随着温度降低,液相炉渣熔体中固体结晶质点的数量逐渐增加,炉渣黏度显著增加。
由SiO2一MgO一AI2O3,三元系相图可以看出,在高碳铬铁炉渣冷却时,首先结晶出来的是镁铝尖晶石(MgO·Al2O3),未凝固的熔体成分发生改变,熔化温度下降,而后陆续析出的是莫来石(3Al2O3·2SiO2)或镁橄榄石(2MgO·SiO2),最后凝固的是低熔点的共晶化合物。
由SiO2一CaO一AI2O3一MnO四元系相图可以看出,硅锰合金炉渣凝固时,首先析出的复合化合物是钙长石或橄榄石。控制炉渣的冷却速度可以改变凝固过程发生的相变,改变固体炉渣的性质。
当硅酸盐炉渣冷却速度过快时,可以将炉渣高温无定形的形态保存到室温。从炉内放出的熔融炉渣在高压水流或风流冲击下转变成以非定形玻璃体为主的粒化渣。冷却速度决定了炉渣中玻璃体的数量。水淬渣中玻璃体的数量为93%~95%;风淬炉渣的玻璃体数量为90%左右。
锰铁和铬铁的水淬渣主要成分为CaO一Al2O3一SiO2一MgO四元系构成的无定形玻璃体,并含有少量橄榄石或钙长石等结晶相。玻璃状物质结构致密、硬度较高,多为不规则形状。由无定形玻璃体组成的粒化炉渣经磨细加工后具有较高的水硬活性,与水作用生成硬度高的水化物。水淬渣相结构决定了其水硬性和用涂。