针对风电单机容量不断增大、向海上发展等所面临的机组体积与重量日益增大,制造、安装、维护更加困难,对机组可靠性要求越来越高等新形势,本项目以提高风电系统能量效率及可靠性与容错能力为目标,提出并研究了一种模块化、容错能力强的多相定子永磁型风力发电机系统。重点研究了该电机系统的电磁、结构和冷却设计理论与原则,建立了多相磁通切换型永磁风力发电机的数学模型,阐明了结构参数、电磁参数与性能之间的映射关系,制定了该类型电机的一般设计原则和方法,为分析和设计该电机奠定了基础。发现了定子永磁型电机定子铁心存在直流偏磁、局部磁滞回环等特有物理现象,提出了综合考虑各向异性导热、接触热阻模拟、场路耦合等功能的精细化多场耦合仿真平台,实现了对电机进行完整、精确的电磁热性能参数仿真计算。从元件级(电机本体与变流器)至系统级(多相定子永磁型风力发电系统),建立了完善的高可靠性设计方案与故障下的高性能容错运行方案,提高了多相永磁直驱风力发电系统的可靠性。创建了涵盖叶轮、变流器、电机定子绕组不对称、定子绕组短路、定子绕组开路等不同故障的永磁风力发电系统故障诊断理论与方法,为实现高性能容错运行奠定了重要基础。此外,还研究了多相绕组的连接规则与协同控制、多目标最优控制以及主动缺相运行策略等基础科学问题。全面掌握了该电机系统的基本工作原理、通用设计理论与分析方法、控制策略及实现方法等关键技术,并试制研制了多种规格多相定子永磁型风力发电机,构建了实验平台,形成了较为系统完整的理论与技术体系,发表期刊论文60篇,SCI收录32篇,获授权发明专利24件。相关成果获2016年度国家技术发明二等奖等奖励,培养了2名IEEE Fellow、1名优青等高层次人才。