理论上来讲,内存异步技术提升内存的频率后,相应的数据带宽也会明显提高,性能应该有所增强。但就异步技术开始出现时的测试成绩来看,内存异步技术的性能提升并不是特别明显,这是为什么呢?其实这是由于采用了异步运行方式后,虽然增加了内存的带宽,但同时也增加了内存的延迟。
比如,某处理器运行在100MHz外频下,其时钟周期为10ns。运用内存异步技术之后,内存可以运行在133MHz频率下,时钟周期为 7.5ns。当周期为7.5 ns的时钟周期结束时,周期为10ns的时钟周期还没有结束,那么前者就需要等待后者完成一个周期后才能开始下一个周期(图2),这样就造成了内存的延迟,而延迟所带来的性能损失也直接导致了测试成绩的下降。这种情况发展到NF2芯片组尤为严重,NF2主板甚至只有内存同步时才能获得最优性能,内存异步技术在当时的AMD平台甚至成为了“鸡肋”。
不过事情总是有转机的,处理器的外频不断提高时,内存技术也跟着飞速发展。高频内存与CPU外频之间,使用异步后的延时越来越小,系统性能的提升也就越来越明显,这样使得内存在一定程度上摆脱了CPU外频对其频率的束缚。内存和CPU之间可以更加灵活自由地进行搭配,这样给用户留下很大可控制的空间,在很大程度上促进了超频技术的发展。当然了,对于那些升级CPU的用户而言,也可以留下以前的内存,只要开启主板的内存异步功能就可以实现平稳的过渡升级。