数学地质解决地质问题的一般步骤或途径如下:①进行地质分析,定义地质问题和地质变量,建立正确的地质模型;②根据地质模型选择或研究适当的数学模型并上机试算;③对计算机输出成果进行地质成因解释,对所研究的地质问题作出定量的预测、评价和解答。数学地质的基本研究方法可概括为:①数学模型法。应用最广泛的是各种多元统计模型。例如用于地质成因研究的因子分析、对应分析、非线性映射分析、典型相关分析;用于研究地质空间变化趋势的趋势面分析和时间序列分析方法等。②概率法则和定量准则。由于地质对象是在广阔的空间、漫长的时间和复杂的介质环境中形成发展和演变的,因此地质现象在很大程度上受概率法则支配,且具有特定的数量规律性,这就要求数学地质研究必须遵循和自觉运用概率法则和定量准则。同时,地质观测结果不可避免地带有抽样代表性误差,因此对各种观测结果或研究结论都要做出可靠概率的估计和精度评价。以矿产定量预测为例,不仅要求确定成矿远景区的空间位置,而且应给出可能发现矿床的个数及规模,发现矿床的概率,查明找矿统计标志的信息量、找矿概率及有利成矿的数值区间等。数学地质的主要研究手段是电子计算机技术,其中包括:①地质过程的计算机模拟,该项技术可以弥补物理模型法和实验地质学法的不足;②建立地质数据库和地质专家系统,以便充分发掘和利用信息资源和专家经验;③计算机地质制图;④地质多元统计计算及其他科学计算。