反应堆堆芯内的流体流动和传热工况直接决定了燃料元件芯块和包壳的温度,为此要进行燃料元件与冷却剂之间的传热系数、堆芯各燃料组件之间的流量分配、燃料组件内流速分布、临界热流密度以及临界后传热等实验研究。随着对安全要求的提高,研究领域从稳态扩展到瞬态,如建造功率高达几万千瓦的整个电厂系统的模拟" />

造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

核电研究与开发研究开发内容

2022/07/16120 作者:佚名
导读:核电研究与开发的内容主要有: 反应堆在什么条件下达到临界"para" label-module="para"> 反应堆堆芯内的流体流动和传热工况直接决定了燃料元件芯块和包壳的温度,为此要进行燃料元件与冷却剂之间的传热系数、堆芯各燃料组件之间的流量分配、燃料组件内流速分布、临界热流密度以及临界后传热等实验研究。随着对安全要求的提高,研究领域从稳态扩展到瞬态,如建造功率高达几万千瓦的整个电厂系统的模拟

核电研究与开发的内容主要有:

反应堆在什么条件下达到临界"para" label-module="para">

反应堆堆芯内的流体流动和传热工况直接决定了燃料元件芯块和包壳的温度,为此要进行燃料元件与冷却剂之间的传热系数、堆芯各燃料组件之间的流量分配、燃料组件内流速分布、临界热流密度以及临界后传热等实验研究。随着对安全要求的提高,研究领域从稳态扩展到瞬态,如建造功率高达几万千瓦的整个电厂系统的模拟实验回路,进行大破口、小破口、蒸汽发生器传热管破裂等实验。这些内容构成了反应堆热工学。

反应堆的基本部件是核燃料元件。燃料元件在高温、高压和强辐照下的性能必须合格,才能放到反应堆内工作。为此必须把研制的燃料元件放在堆外模拟回路和堆内(研究堆的小回路内或随堆)进行考验,然后详细检查它的变形和腐蚀等情况。由于这时它的放射性非常强,检验必须在良好屏蔽的“热室”中进行,为此必须研制能够远距离操作的各种检验手段。核燃料元件与组件生产工艺研究与燃料组件的堆内、外考验,检验等研究工作一起,组成反应堆燃料元件研究的主要内容。

核电厂内常用的燃料(棒)包壳材料、压力容器钢、蒸汽发生器管材、一回路主管道管材等处于高温、强辐照和高应力下,容易发生破裂,影响安全。为此不仅需要测定这些材质未经辐照和辐照后的强度、脆性、蠕变、疲劳等机械性能,还要研究它们与周围介质的相容性。以选取合适材质和不断改善其性能为目标的这些研究工作,就是反应堆材料学。

在运行中发现水质对材料的各种性能,特别是对腐蚀性能有重大影响。何种水质为佳"para" label-module="para">

为了确保核电安全,控制保护是十分重要的。核电厂控制保护系统充分利用了现代电子学的各种先进技术。提高控制保护系统的可靠性,确保在预定的各种整定值下能够动作,是目前反应堆控制研究的主要目标。

核电厂结构复杂,许多结构处在高温和高强度下,机械应力与热应力的紧密结合,产生了许多新的结构力学研究课题,使反应堆结构力学成为一个十分活跃的学科。

20世纪90年代,核电研究与开发的大量实验结果已被综合到一系列计算机软件和工程数据库中,这些软件对设计和运行起到了重要作用。不仅各个专业都有了自己成套的程序,而且整个核电厂系统也有了大型分析程序,可以对核电厂各种假想事故进行分析,计算结果已相当准确,为设计各种防范措施提供了依据。近年来概率安全评价有了很大发展,它不仅能估算各类事故的风险,且可以找出核电厂在设计、运行等方面的薄弱环节加以改进。在这些工作基础上发展起来的核电厂模拟机和仿真机等技术,能实时甚至比实时更快地展示核电厂事故发展进程。这些是目前正在飞速发展的核电厂安全分析的内容。

通过30多年的核电科研,人们对核电的规律已较深入地掌握。从趋势上看,核电厂正从由简到繁转向由繁到简的新的发展阶段,这正是大量核电厂运行经验积累和长期科研的成果。目前发展基本成熟的先进轻水堆(如先进沸水堆ABWR)和其他先进堆(如固有安全堆PIUS),无疑将把核电厂推向一个更安全和更经济的发展阶段。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读