自陀螺仪问世以来,因其具有不受制于任何外界信息而能测量出载体姿态信息的能力而被应用在航空、航天、航海等领域中。随着社会的进步,惯性技术的不断发展,以陀螺仪为核心器件的测量系统己从传统的军用市场走向广阔的民用市场。发展陀螺仪及其相关技术,一直是各国重点研究的内容之一,也成为衡量一个国家科技水平和军事实力的重要标志之一。除了不断开发新型陀螺仪以外,对已有的陀螺仪通过技术革新,提高精度、降低成本也具有重要的现实意义。虽然静电陀螺仪和液浮陀螺仪具有很高的精度,但是结构复杂,价格昂贵,应用不是广泛;而目前在研究的固体陀螺仪技术还不成熟,存在较多的技术难点要突破,要想达到更高的精度、更广泛的应用还需要投入大量的几力和财力进行探索和研究。相比较而言由于气体的粘度比液体粘度小,气体轴承具有摩擦阻力小、功耗低、转速高、无污染等优点,采用气体润滑的高速轴承能够提高仪表的可靠性、寿命和精度,气体润滑轴承的这些优点,使得它非常适合于惯性器件的制作,而且相对于已有的气浮陀螺仪来说有进一步提高精度、降低成本、简化结构、减小体积的可能。
通过相容性条件统一了狭缝气膜和球面润滑气膜,采用三角形有限单元划分统一后的气膜,以小扰动法为基础将陀螺轴承内的气膜压力分解为静态压力和动态压力两部分,通过迦辽金加二阶微分降为一阶微分,以降低对插值函数连续性的要求,根据气体流量守恒方程和稳态压力方程求解气膜内的稳态压力,进而求得动态压力和陀螺轴承气膜的动态特性系数,并分析陀螺仪轴承结构参数对动态性能的影响规律。以陀螺仪轴承转子的动态性能参数为基础,根据陀螺仪转子的运动方程,得到陀螺轴承转子稳定运转时的临界稳定性方程,进而求得用临界质量来表示陀螺仪转子稳定运转的稳定性判据。根据此判据,分析陀螺仪轴承各结构参数对稳定性的影响规律,结合气体陀螺轴承的静态承载性能,对陀螺仪转子结构进行多目标优化设计,以其得到具有较高的静态承载性能和动态稳定性的结构。为了陀螺仪能够稳定运转,减小由不平衡量引起的机械漂移误差,必须对陀螺仪转子进行平衡。本文针对新型结构的陀螺仪转子存在球心位置难以确定,质心不在转子实体上的特点,提出了辅助件初始静平衡气浮单摆精密静平衡动平衡的思路和方法,解决了该结构类型陀螺仪转子的平衡问题 。