想提升往复式活塞发动机的输出马力,方法非常简单,但汪克尔发动机则不然。譬如改变往复式活塞发动机凸轮轴的角度或扬程,以变更气门正时或加大重叠角而提升马力;在汪克尔发动机上则可移动或扩张进、排气埠得到同样的效果。但是组装往复式发动机的凸顶活塞提高压缩比,以增加油气混合密度且调整空燃比进而提升马力,这种方式在汪克尔发动机上却办不到。即使加大转子侧边的凹槽尺寸,也不能改变其空气吸入量。换言之,想改造汪克尔发动机本体而增加马力,便必须牺牲低转速扭力换取高转速马力。
此外,点火系统也是汪克尔发动机的弱点之一。因为它的燃烧室会移动运转,爆炸的过程中火焰传播的型态必定不佳,要采用复杂的双点火系统和更强力的电火花,所以点火正时与火花塞的位置非常重要。
因燃烧时间短暂,混合油气的燃烧不完全,使得耗油量比往复式发动机多了约10%。汪克尔发动机在启动与低转速时会排出大量的碳氢化合物,是往复式发动机的二倍。但是加速提高转速后,排出量明显下降,所以一般对汪克尔发动机的空气污染问题都有疑虑。为了解决这个问题,一般会加装热反应器、触媒反应器与后燃器等装置。相对地,由于转子发动机的三个燃烧室并非完全隔离,因此在使用一段时间之后容易因为菱封材料与缸壁磨损而造成漏气问题,大幅增加油耗与污染。
虽然转子发动机具有以小排气量、利用高转速而产生高输出的特性,但由于工作原理与往复式发动机不同,世界各国在制订发动机排气量的税则时,皆是以转子发动机的实际排气量乘以二来作为与往复式发动机之间的比较基准。举例来说,马自达生产的RX-8跑车,实际排气量虽然只有1,308c.c.,但在日本国内却是以2,616c.c.的排气量来作为税级计算的基准。