在实践中,测量不确定度可能来源于以下10个方面:
⑴对被测量的定义不完整或不完善;
⑵实现被测量的定义的方法不理想;
⑶取样的代表性不够,即被测量的样本不能代表所定义的被测量;
⑷对测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善;
⑸对模拟仪器的读数存在人为偏移;
⑹测量仪器的计量性能的局限性。测量仪器的不准或测量仪器的分辨力、鉴别力不够;
⑺赋与计量标准的值和参考物质(标准物质)的值不准;
⑻引用于数据计算的常量和其它参量不准;
⑼测量方法和测量程序的近似性和假定性;
⑽在表面上看来完全相同的条件下,被测量重复观测值的变化。
由此可见,测量不确定度一般来源于随机性和模糊性,前者归因于条件不充分,后者归因于事物本身概念不明确。这就使得测量不确定度一般由许多分量组成,其中一些分量可以用测量列结果(观测值)的统计分布来进行估算,并且以实验标准〔偏〕差(见5.17条)表征;而另一些分量可以用其它方法(根据经验或其它信息的假定概率分布)来进行估算,并且也以标准〔偏〕差表征。所有这些分量,应理解为都贡献给了分散性。若需要表示某分量是由某原因导致时,可以用随机效应导致的不确定度和系统效应导致的不确定度,而不要用“随机不确定度”和“系统不确定度”这两个业已过时或淘汰的术语。例如:由修正值和计量标准带来的不确定度分量,可以称之为系统效应导致的不确定度。