19世纪60年代,高压脉冲电场被证明对微生物细胞具有破坏力。自Sale等系统地研究脉冲电场对微生物失活的影响之后,国内外许多研究机构和企业都开始关注对
PEF技术中关键部件高压脉冲发生器的研究与设计。产生高压脉冲输出的方法有多种,其中一种常见的高压脉冲发生器是由Marx电路产生,其原理图见图。
Marx电路通过电容并联充电、串联放电来实现高压输出。传统的Marx发生器由火花隙开关来控制,导致其重复频率不高。随着半导体开关的发展,逐渐代替火花隙开关,从而提高了Marx输出的重复频率。
通过IGBT串联法设计了一套输出150KV/10A、脉宽为1~20μs的Marx型高压脉冲发生器。李志强等以及甘延青等均对此展开了研究设计。Marx型发生器所需直流电源电压较低、无需使用变压器,因此其体积比较小,但需通过LC充电来补充脉冲期间失去的电荷,所以其重复频率不太高。另外,随 着Marx脉冲发生器级数的增大,导致输出脉冲前沿时间变长,不利于杀菌效率的提高。通过脉冲变压器升压后也可得到高压脉冲发生器。研究者曾利用IGBT模块逆变和脉冲变压器升压搭建了高压脉冲发生器。应雪正以及陈杰等通过脉冲变压器升压法获得高压脉冲发生器。利用脉冲变压器升压法研究设计的脉冲发生器由于均使用脉冲变压器升压,从而降低了高压直流电源的电压等级,简化了变压器初级电路的设计,因而得到广泛应用。但脉冲变压器的应用同时也限制了输出脉冲宽度的变化范围,且脉冲变压器对快前沿脉冲响应较差。另外由于变压器的恢复时间问题,导致脉冲重复频率不能太高。所以研究设计价格低廉、寄生参数小的大功率脉冲变压器是提高此类型高压脉冲发生器参数的一个方向。除了以上两种方法,还可以直接利用开关来控制高压电路的充放电,从而省去脉冲变压器的使用。但是用作高压脉冲发生器的调制开关一般都需要进行串并联组合运用才能达到使用目的。
Seung-Bok等利用IGBT串联技术研制了一台电压幅值40KV、电流150A、频率3KHz、脉宽0~5μs、脉冲前沿小于100ns的高压脉冲发生器。孔甘银等通过开关的串并联得到高压脉冲输出。利用此方法设计的脉冲发生器具有很宽的脉宽和频率调节范围。但该类型脉冲发生器需要一台和输出脉冲幅度相等的高压直流电源作为初级电源,因而其体积庞大,价格昂贵。系统电路设计时需要考虑串并联均压均流、触发隔离以及保护等技术难题,所以电路设计比较复杂。
近年来又出现基于传输线变压器耦合多开关驱动变阻线的脉冲发生器和加法型全固态脉冲发生器。前者原理可概括为:当电容性储能元件充电完成后,因TLT的耦合作用,任意开关导通都将触发其余开关同时导通,储能元件通过TLT驱动变阻线输出高压脉冲。后者主要应用于超高压、大功率脉冲。