造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

三维激光打印方法与系统实施方式

2022/07/16234 作者:佚名
导读:实施例1 参见附图1,是该实施例中一种光栅空频和取向连续可变的四参量(x,y,Λ,θ)三维图像及其显示效果示意图。 该实施例的三维图像1位于坐标平面(x,y)处,由一系列衍射像素2构成,所述衍射像素2由一组具有特定空频和取向的像素光栅3填充而成。所述图像1中的像素光栅的空频自上而下逐渐变化,取决于照明光的方向和观察窗口的位置,一般地,从图像的上部到底端,空频逐渐变大。所述三维图像在照明光7的照明下

实施例1

参见附图1,是该实施例中一种光栅空频和取向连续可变的四参量(x,y,Λ,θ)三维图像及其显示效果示意图。

该实施例的三维图像1位于坐标平面(x,y)处,由一系列衍射像素2构成,所述衍射像素2由一组具有特定空频和取向的像素光栅3填充而成。所述图像1中的像素光栅的空频自上而下逐渐变化,取决于照明光的方向和观察窗口的位置,一般地,从图像的上部到底端,空频逐渐变大。所述三维图像在照明光7的照明下发生衍射,在距离图像平面Z处的(x’,y’)平面上形成狭缝型观察窗口6,所述观察窗口6由多个观察区域5构成,不同的观察区域对应三维图不同视角的像。三维图像中表示同一视角图像信息的衍射像素的衍射光线4进入所述同一观察区域。所述衍射像素中的光栅空频和取向,由照明光7的入射角、衍射光线4的出射角以及衍射波长共同确定,根据光栅方程其关系满足如下条件:

其中α7,β7分别为照明光线7的方向余弦角,α4,β4分别为衍射光线4的方向余弦角,λ为衍射波长。照明光线7的方向余弦根据观察条件设定。衍射光线的方向余弦可根据衍射像素与观察区域的相对位置计算得到:

实施例中狭缝型观察窗口的x’方向的尺寸大于人眼双目之间的距离,通常取值大于60毫米,观察窗口y’方向的尺寸取值3毫米-10毫米。为实现该实施例所述的狭缝型观察窗口,三维图像1将形成如图1虚线框内所示的一系列呈双曲型的曲线单元,曲线单元中的像素光栅的空频和取向连续变化,满足:

,其中Λ0为常数是曲线单元中的最低频率。满足上述条件的三维图像在观察区域内将看到整幅颜色一致的彩色图像。

实施例2

参见附图2,是该实施例中一种光栅空频和取向连续可变的四参量(x,y,Λ,θ)三维彩色图像的示意图。

该实施例的三维彩色图像1位于坐标平面(x,y)处,由一系列衍射像素2构成,所述衍射像素2由红色子像素20、绿色子像素21、蓝色子像素22组成,所述三种颜色的子像素由一组具有特定空频和取向的光栅3和空白区域23填充而成。述图像1中的像素光栅的空频自上而下逐渐变化,取决于照明光的方向和观察窗口的位置,一般地,从图像的上部到底端,空频逐渐变大。所述三维彩色图像在照明光7的照明下发生衍射,在距离图像平面Z处的(x’,y’)平面上形成狭缝型观察窗口6,所述观察窗口6由多个观察区域5构成,不同的观察区域对应三维图不同视角的像。三维图像中表示同一视角图像信息的光栅像素的红色衍射光线40、绿色衍射光线41、蓝色衍射光线42进入所述同一观察区域,形成彩色图像。所述光栅像素的光栅空频和取向,由照明光的入射角、衍射光线的出射角以及衍射波长共同确定。

所述衍射波长可以是红、绿、蓝三基色波长,也是CIE1931色度坐标中真彩色区间内的任意三个波长。所述红、绿、蓝三色光的灰度等级通过衍射像素中空白区域23占据整个像素的面积来调控,空白区域占据面积大亮度低,占据面积小亮度高。

该实施例中示意的色彩形成并不局限于红、绿、蓝三基色体系内的色彩,也可以是四色、六色等任意基色调配形成的色彩,分别对应四色、六色波长。同一物点不同颜色(λ1,λ2)对应的像素光栅的空频变化规律满足如下关系:

实施例3

参见图3所示,是一种光栅空频和取向连续可变的四参量(x,y,Λ,θ)光学调制方法示意图。

该实施例中,一种光栅空频和取向连续可变的四参量(x,y,Λ,θ)光学调制方法。包括焦距为f1的第一傅立叶变换透镜8与焦距为f2的第二傅立叶变换透镜10透镜构成的4F光学系统和衍射光栅9。所述衍射光栅9位于第一傅立叶变换透镜与第一傅立叶变换透镜的焦距之间。衍射光栅可以沿着光轴11移动,也可以绕着光轴11转动。

所述方法通过移动衍射光栅9改变衍射光栅与第一傅立叶变换透镜之间的距离d0,实现所述光栅空频Λ参数的连续调制。通过旋转衍射光栅9,实现所述光栅取向角θ参数的连续调制。通过4F系统的光轴11与(x,y)平面的相对移动实现所述参数(x,y)的连续调制。

该实施例中所述衍射光栅9为一维位相型光栅,其位相分布函数为空频为Λ的余弦函数T(x0,y0)=cos(2Λx0),在4F系统的输出平面(x,y)上的光场分布为:

所述光场分布仍为余弦函数光栅,其中A为振幅,光栅的空频

是距离d0的线性函数,可通过移动衍射光栅9改变参数d0实现空频的连续调制,调制范围为(0~Λf1/f2)。

《三维激光打印方法与系统》中所述的衍射光栅的分布函数包括但并不局限于该实施例中所述的一维余弦函数分布,可以是二维余弦函数、一位方波函数、二维方波函数等任意周期性函数,还可以是具有特定频谱分布的任意二元光学元件,二元光学元件结构可根据具体的频谱分布结合二元光学原理具体设计。

在《三维激光打印方法与系统》所述的4F系统的频谱面上,可以对衍射光栅的频谱进行必要的滤波操作,包括但不局限于消除零级光、遮挡高级次衍射等。

《三维激光打印方法与系统》中所述的空频连续调制范围包括但不局限于(0~Λf1/f2),可以对输出平面(x,y)上的光场分布进行进一步的微缩,设定微缩倍率为M,微缩物镜的衍射极限频率为Λlimit,则系统空频调制的最大值为Λmax=min[Λlimit,ΛMf1/f2],相应的空频调制范围为(0~Λmax)。

实施例4

参见图4所示,是一种光栅空频和取向连续可变的四参量(x,y,Λ,θ)光学调制方法示意图。

该实施例中,一种光栅空频和取向连续可变的四参量(x,y,Λ,θ)光学调制方法。包括焦距为f1的第一傅立叶变换透镜8与焦距为f2的第二傅立叶变换透镜10透镜构成的4F光学系统和衍射光栅9。所述衍射光栅9位于第二傅立叶变换透镜前焦距与第二傅立叶变换透镜之间。衍射光栅可以沿着光轴11移动,也可以绕着光轴11转动。

所述方法通过移动衍射光栅9改变衍射光栅与第二傅立叶变换透镜之间的距离d0,实现所述光栅空频Λ参数的连续调制。通过旋转衍射光栅9,实现所述光栅取向角θ参数的连续调制。通过4F系统的光轴11与(x,y)平面的相对移动实现所述参数(x,y)的连续调制。

《三维激光打印方法与系统》中所述的衍射光栅的分布函数包括但并不局限于该实施例中所述的一维余弦函数分布,可以是二维余弦函数、一位方波函数、二维方波函数等任意周期性函数,还可以是具有特定频谱分布的任意二元光学元件,二元光学元件结构可根据具体频谱分布结合二元光学原理具体设计。

实施例5

参见附图5,是该实施例中一种实现光栅空频和取向连续可变的四参量(x,y,Λ,θ)三维彩色图像输出的激光打印系统示意图。

该实施例中的三维彩色图像激光打印系统包含纳秒脉冲激光12,空间滤波器13,第一傅立叶变换透镜8,衍射光栅9,第二傅立叶变换透镜10,视场光阑16,实时检测光路17,半透半反镜18,tubelens19,微缩物镜30,自动聚焦光路31,二维精密平移台32,运动控制器33,控制计算机34,感光材料35。

实施例中纳秒脉冲激光12发出的激光经空间滤波器13扩束准直后形成平行光进入由第一傅立叶变换透镜8,衍射光栅9,第二傅立叶变换透镜10构成的光栅空频和角度连续调制光路,在第二傅立叶变换透镜10后的区域形成指定空频和取向的光栅条纹信息,在第二傅立叶变换透镜后焦面上设置有视场光阑16用于限制干涉条纹的成像区域,透过视场光阑的光栅条纹经过半透半反镜18,tubelens19和微缩物镜30在感光材料35上形成高频光栅条纹。运动控制器33在控制计算机34设定的程序控制下协调纳秒脉冲激光12的脉冲时序、衍射光栅9的移动和转动以及二维精密平移台32的二维移动,在感光材料上记录四参量(x,y,Λ,θ)调制的三维彩色图像信息。实时检测光路17对感光材料表面成像用于实时观测记录过程。自动聚焦光路31监控并实时调整聚焦物镜与感光材料表面的距离,保证高频光栅条纹在感光材料表面精确成像。

该实施例中采用半导体泵浦的固态激光光源,包括如纳秒脉冲激光光源等,其输出频率可达到1000Hz以上,且脉冲能量高,可对光刻胶等材料进行曝光刻蚀;也可直接瞬态去处或者改变基底材料的特性形成浮雕光栅结构,实现微纳结构图像的打印输出。

例如,该实施例中所述衍射光栅9是空频为Λ=75line/毫米的余弦光栅,第一傅立叶变换透镜的焦距f1=10cm,第二傅立叶变换透镜的焦距f1=5cm,微缩物镜的倍率M=20,系统的空频变化范围(0~3000line/毫米)。该空频范围能够实现在可见光区的真彩色三维图像的准确表达。

该实施例中所述空频变化的最大值为Λmax=min[Λlimit,ΛMf1/f2],Λlimit是系统的衍射极限频率,相应的空频调制范围为(0~Λmax)。例如,对于波长为266nm的深紫外系统,其极限空频为7519line/毫米,理论上系统的空频变化范围是(0~7519line/毫米)。对于极紫外系统、X射线等系统该实施例中所述的空频变化范围将更大。

实施例6

参见附图6,是该实施例中一种实现光栅空频和取向连续可变的四参量(x,y,Λ,θ)三维图像输出的激光打印系统示意图。

该实施例中的三维激光打印系统包含纳秒脉冲激光12,空间滤波器13,第一傅立叶变换透镜8,衍射光栅9,第二傅立叶变换透镜10,视场光阑16,实时检测光路17,半透半反镜18,tubelens19,微缩物镜30,自动聚焦光路31,二维精密平移台32,运动控制器33,控制计算机34,感光材料35。

实施例中纳秒脉冲激光12发出的激光经空间滤波器13扩束准直后形成平行光进入由第一傅立叶变换透镜8,衍射光栅9,第二傅立叶变换透镜10构成的光栅空频和角度连续调制光路,衍射光栅9在第二傅立叶变换透镜前焦距与第二傅立叶变换透镜之间,在第二傅立叶变换透镜10后的区域形成指定空频和取向的光栅条纹,在紧靠第二傅立叶变换透镜后设置有视场光阑16用于限制干涉条纹的成像区域,透过视场光阑的光栅条纹经过半透半反镜18,tubelens19和微缩物镜30在感光材料35上形成高频光栅条纹。运动控制器33在控制计算机34设定的程序控制下协调纳秒脉冲激光12的脉冲时序、衍射光栅9的移动和转动以及二维精密平移台32的二维移动,在感光材料上记录四参量(x,y,Λ,θ)调制的三维图像信息。实时检测光路17对感光材料表面进行成像用于实时观测记录过程。自动聚焦光路31监控并实时调整聚焦物镜与感光材料表面的距离,保证高频光栅条纹在感光材料表面精确成像。

实施例7

参见附图7,是该实施例中一种实现光栅空频和取向连续可变的四参量(x,y,Λ,θ)三维图像输出的激光打印系统示意图。

该实施例中的三维图像激光打印系统包含纳秒脉冲激光12,空间滤波器13,反射镜14,DMD空间光调制器15,第一傅立叶变换透镜8,衍射光栅9,第二傅立叶变换透镜10,视场光阑16,实时检测光路17,半透半反镜18,tubelens19,微缩物镜30,自动聚焦光路31,二维精密平移台32,运动控制器33,控制计算机34,感光材料35。

实施例中纳秒脉冲激光12发出的激光经空间滤波器13扩束准直后形成平行光入射到DMD空间光调制器15上,DMD空间光调制器作为可变光栅用于控制平行光束的直径,经过DMD空间光调制器反射的光线进入由第一傅立叶变换透镜8,衍射光栅9,第二傅立叶变换透镜10构成的光栅空频和角度连续调制光路,在第二傅立叶变换透镜10的后焦面上形成指定空频和取向的光栅条纹,后焦面上设置有视场光阑16,透过视场光阑的光栅条纹经过半透半反镜18,tubelens19和微缩物镜30在感光材料35上形成高频光栅条纹。运动控制器33在控制计算机34设定的程序控制下协调纳秒脉冲激光12的脉冲时序、衍射光栅9的移动和转动以及二维精密平移台32的二维移动,在感光材料上记录形成四参量(x,y,Λ,θ)调制的三维图像信息。实时检测光路17对感光材料表面成像用于实时观测记录过程。自动聚焦光路31监控并实时调整聚焦物镜与感光材料表面的距离,保证高频光栅条纹成像面在感光材料表面精确成像。

实施例8

参见附图8,显示的是该实施例中衍射光栅9的三种表面面型结构及函数或者频谱分布。图8(a)显示的是一维余弦相位分布的衍射光栅,图8(a)左测是余弦相位函数曲线,右侧是衍射光栅的表面面型。图8(b)显示的是一维方波相位函数分布的衍射光栅,图8(b)左测是方波相位函数曲线,右侧是衍射光栅的表面面型。图8(c)显示的是二维相位分布函数的衍射光栅,图8(c)右侧显示的是其频谱函数,所示频谱函数是三个δ函数,即在其频谱平面上将获得三个点光源。图8(c)所示的二维位相分布函数可根据二元光学元件设计方法计算得到。

该实施例中的不同函数分布的衍射光栅,将获得不同的四参量调制效果。

实施例9

参见附图1、2、5、9,图9是该实施例中一种三维激光打印方法与系统流程图。

该实施例中首先将三维物体信息(x,y,z,I)进行编码转换形成一种如图1或图2所示的四参量三维图像数据(x,y,Λ,θ),所述四参量三维数据连续变化。然后将图像数据输入如图5所示的光栅位置、空频和取向连续可调的四参量(x,y,Λ,θ)三维激光打印系统,通过打印实现三维彩色图像的物理输出。

该实施例中所述的三维彩色图像由不同空频和取向的衍射像素构成,将在距离图像平面Z处的观察平面上形成狭缝型观察窗口。所述衍射像素所填充的像素光栅的空频和取向连续变化。空频与取向将根据图像的种类不同而变化。一般地,彩色图像的空频从下而下逐渐增大。

该实施例中所述观察窗口包括若干观察区域,不同的观察区域对应三维图像不同的视角。三维图像中表示同一视角图像信息的衍射像素的衍射光线进入所述同一观察区域。通过所述观察窗口可看到真彩色三维图像。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读