集中电路法是一种在低频段将有耗材料填充电容,利用电容各参数以及测量得到的导纳推出介电常数的一种方法。为了测量导纳,通常用并联谐振回路测出 Q 值(品质因数)和频率,进而推出介电常数。由于其最高频率会受到最小电感的限制,这种方法的最高频率一般是
100 MHz。最小电感一般为 10 nHz 左右。如果电感过小,高频段杂散电容影响太大。如果频率过高,则会形成驻波,改变谐振频率同时辐射损耗骤然增加。但这种方法并不适用于低损材料。因为这种方法能测得的 Q 值只有 200 左右,使用网络分析仪测得 tan也只在
传输线法是网络法的一种,是将介质置入测试系统适当位置作为单端口或双端口网络。双端口情况下,通过测量网络的 s 参数来得到微波的电磁参数。早在 2002 年用传输反射法就能够实现对任意厚度的样品在任意频率上进行复介电常数的稳定测量。
NRW T/R 法(即基于传输/反射参数的传输线法)的优势是简单、精度高并且适用于波导和同轴系统。但该方法在样品厚度是测量频率对应的半个波导波长的整数倍时并不稳定。同时此方法存在着多值问题,通常选择不同频率或不同厚度的样品进行测量较浪费时间并且不方便。此外就是对于极薄的材料不能进行高精度测量。反射法测量介电常数的最早应用是Decreton 和 Gardial 在 1974 年通过测量开口波导系统的反射系数推导出待测样品的介电常数。同轴反射法是反射法的推广和深化,即把待测样品等效为两端口网络,通过网络分析仪测量该网络的散射系数,据此测试出材料的介电常数。结果显示,同轴反射法在测量高损耗材料介电常数上有一定可行性,可以测量和计算大多数高损耗电介质的介电常数,对谐振腔法不能测量高损耗材料介电常数的情况有非常大的补充应用价值。2006 年又提出了一种测量低损耗薄膜材料介电常数的标量法。该方法运用了传输线法测量原理,首先测量待测介质损耗,间接得出反射系数,然后由反射系数与介电常数的关系式推出介质的介电常数。其薄膜可以分为低损耗、高损耗和高反射三类,通过实验证明了三种薄膜的损耗随频率改变基本呈相同的变化趋势,高频稍有差别,允许误差范围内可近似。该方法切实可行,但不适用于测量表面粗糙的介质。有人提出了新的确定 Ka 波段毫米波损耗材料复介电常数的磁导率的测量方法并给出了确定样品的复介电常数及磁导率的散射方程。此方法有下列优点:1) 计算复介电常数及磁导率方程组是去耦合的,不需要迭代;2) 被测量的频率范围比较宽;3) 与传统方法相比消除了介电常数测量对样品长度和参考面的位置的依赖性;4) 消除了 NRW 方法在某些频点测量的不确定性。还有人将椭圆偏振法的电磁频谱从可见光、红外光扩展到毫米波段。椭圆偏振法用测量样品反射波或者投射波相对于入射波偏振状态的改变来计算光电特性和几何参数。毫米波椭圆偏振法得到的复介电常数的虚部比实部低,即计算得到的虚部有一定误差,但它对椭圆偏振法的进一步研究提供了重要的参考依据。
自由空间法其实也可算是传输线法。它的原理可参考由空间法与传输线法有所不同。传输线法要求波导。其测量系统样品时,忽略波导损耗,短路段反射系线路传输法,通过测得传输和反射系数,改变样品数据和频率来得到介电常数的数值。自由空间法保存了线路传输法可以测量宽频带范围的优点。自由空间法要求材料要有足够的损耗,否则会在材料中形成驻波并且引起误差。因此,这种方法只适用于高于 3 GHz 的高频情况。其最高频率可以达到 100 GHz。