光固化快速成型的误差分析光固化快速成型技术的基本原理是将任意复杂的三维CAD模型转化为一系列简单的二维层片,逐层固化粘结,从而获得三维模型"按照成型机的成型工艺过程,可以将产生成型误差的因素按概述图所示分类"。
2.前期数据处理误差
由于成型机所接收的是模型的轮廓信息,所以加工前必须对其进行数据转换"1987年,3DsystSnel公司对任意曲面CAD模型作小三角型平面近似,开发了TsL文件格式,并由此建立了从近似模型中进行切片获取截面轮廓信息的统一方法,延用至今[1]"多年以来,STL文件格式受到越来越多的CAD系统和设备的支持,其优点是大大简化了CAD模型的数据格式,是CAD系统与RP系统之间的数据交换标准,它便于在后续分层处理时获取每一层片实体点的坐标值,以便控制扫描镜头对材料进行选择性扫描"因此被工业界认为是快速成型数据的准标准,几乎所有类型的快速成型系统都采有STL数据格式,极大地推动了快速成型技术的发展"对三维模型进行数据处理,误差主要产生于三维CAD模型的STL文件输出和对此STL文件的分层处理两个过程中"下面将分别论述STL格式文件转换和分层处理对成型精度的影响"
2.1几文件格式转换误差
STL几文件的数据格式是采用小三角形来近似逼近三维CAD模型的外表面,小三角形数量的多少直接影响着近似逼近的精度.显然,精度要求越高,选取的三角形应该越多"一般三维CAD系统在输出STL格式文件时都要求输入精度参数,也就是用STL格式拟合原CAD模型的最大允许误差"这种文件格式将CAD连续的表面离散为三角形面片的集合,当实体模型表面均为平面时不会产生误差,.但对于曲面而言,不管精度怎么高,也不能完全表达原表面,这种逼近误差不可避免地存在"如制作一圆柱体,当沿轴线方向成型时,如果逼近精度有限,则明显地看到圆柱体变成了棱柱体,如图1.2所示"
解决方法:清除这种误差的根本途径是直接从CAD模型获 取制造数据,但是实用中尚未达到这一步"现有的办法只能在对CAD模型进行ST职洛式转换时,通过恰当地选择精度参数值减少这一误差,这往往依赖于经验"。
2.2分层处理对成型精度的影响
分层处理产生的误差属于原理误差,分层处理以S几文件格式为基础,先确定成型方向,通过一簇垂直于成型方向的平行平面与STL文件格式模型相截,所得到的截面与模型实体的交线再经过数据处理生成截面轮廓信息,平行平面之间的距离就是分层厚度"由于每一切片层之间存在距离,因此切片不仅破坏了模型表面的连续性,而且不可避免地丢失了两切片层间的信息,这一处理造成分层方向的尺寸误差和面型精度误差"。
(1)分层方向尺寸误差分析
进行分层处理时,确定分层厚度后,如果分层平面正好位于顶面或底面,则所得到的多边形恰好是该平面处实际轮廓曲线的内接多边形;如果汾层平面与此两平面不重合,即沿切层方向某一尺寸与分层厚度不能整除时,将会引起分层方向的尺寸误差"
1)增加分层数量!减小分层厚度
为了获得较高的面型精度,应尽可能减小分层厚度,但是,分层数量的增加,使制造效率显著降低"同时,层厚太小会给涂层处理带来一定的困难"另外,自适应性切片分层技术能够较好的提高面型精度,是解决这一问题的较为有效途径"
2)优化成型制作方向
优化成型制作方向,实质上就是减小模型表面与成型方向的角度,也就是减小体积误差"
3成型加工误差
3.1机器误差
机器误差是成型机本身的误差,它是影响制件精度的原始误差"机器误差在成型系统的设计及制造过程中就应尽量减小,因为它是提高制件精度的硬件基础"。
(l)工作台Z方向运动误差
工作台Z方向运动误差直接影响堆积过程中的层厚精度,最终导致Z方向的尺寸误差;而工作台在垂直面内的运动直线度误差宏观上产生制件的形状!位置误差,微观上导致粗糙度增大"对于CPS350成型机来说,所采用的系统在500mm范围内的全程定位精度为0.03mm,双向重复定位精度为0003mm。
(2)X.Y方向同步带变形误差
X.Y扫描系统采用X,Y二维运动,由步进电机驱动同步齿形带并带动扫描镜头运动在定位时,由于同步带的变形,会影响定位的精度,常用的方法是采用位置补偿系数来减小其影响CPS35O成型机出厂后进行位置补偿,其重复定位精度可达到005mm。
(3)XY方向定位误差
扫描过程中,X.Y扫描系统存在以下问题:
1)系统运动惯性力的影响
对于采用步进电机的开环驱动系统而言,步进电机本身和机械结构都影响扫描系统的动态性能"-XY扫描系统在扫描换向阶段,存在一定的惯性,使得扫描头在零件边缘部分超出设计尺寸的范围,导致零件的尺寸有所增加"同时扫描头在扫描时,始终处于反复加速减速的过程中,因此,在工件边缘,扫描速度低于中间部分,光束对边缘的照射时间要长一些,并且存在扫描方向的变换,扫描系统惯性力大,加减速过程慢,致使边缘处树脂固化程度较高"。
2)扫描机构振动的影响
成型过程中,扫描机构对零件的分层截面作往复填充扫描,扫描头在步进电机的驱动下本身具有一个固有频率,由于各种长度的扫描线都可能存在,所以在一定范围内的各种频率都有可能发生,当发生谐振时,振动增大,成形零件将产生较大的误差"。
3.2光固化成型误差
(1)光斑直径产生的误差
这一固化成型特点,使所做出的零件实体部分实际上每侧大了一个光斑半径,零件的长度尺寸大了一个光斑直径,使零件产生正偏差,虽然控制软件中采用自适应拐角延时算法,但由于光斑直径的存在,必然在其拐角处形成圆角,导致形状钝化,降低了制件的形状精度,而使得一些小尺寸制件无法加工"由上述分析可知,如果不采用光斑补偿,将使制件产生正偏差"为了消除或减少正偏差,实际上采用光斑补偿,使光斑扫描路径向实体内部缩进一个光斑半径"。
4.后处理产生的误差
从成型机上取出已成型的工件后,需要进行剥离支撑结构,有的还需要进行后固化、修补、打磨、抛光和表面处理等,这些工序统称为后处理"这类误差可分为以下几种:
(1)工件成型完成后,去除支撑时,可能表面质量产生影响,所以支撑设计时要合理,不多不少,一般支撑间距为6nnn"支撑的设计与成型方向的选取有关,在选取成型方向时,要综合考虑添加支撑要少,并便于去除等"。
(2)由于温度!湿度等环境状况的变化,工件可能会继续变形并导致误差,并且由于成型工艺或工件本身结构工艺性等方面的原因,成型后的工件内总或多或少地存在残余应力,这种残余应力会由于时效的作用而全部或部分地消失,这也会导致误差"设法减小成型过程中的残余应力有利于提高零件的成型精度"。
(3)制件的表面状况和机械强度等方面还不能完全满足最终产品的要求"例如制件表面不光滑,其曲面上存在因分层制造引起的小台阶、小缺陷,制件的薄壁和某些小特征结构可能强度不足、尺寸不够精确!表面硬度或色彩不够满意"采用修补、打磨、抛光是为了提高表面质量,表面涂覆是为了改变制品表面颜色提高其强度和其它性能,但在此过程中若处理不当都会影响原型的尺寸及形状精度,产生后处理误差"。
5.结论
如何控制光固化成形工艺的精度是众多研究者和学者必须考虑的一个问题。尽管可以通过多种方法来提高制件的成形精度,比如直接对三维 CAD 模型进行分层以避免 STL 文件转换过程中造成的误差和通过改进激光扫描方式也可以减小制件的内应力和形变量来提高制件的精度等方法都可以实现对精度的控制。但是在整个成形工艺过程中,其工艺路线和工艺参数对制件的精度也存在着很大的影响,仍然需要进一步的研究。另外,光固化快速成型工艺的加工成本、生产效率及制件性能也需要在整个成形过程中考虑的重要因素。