由对称正定矩阵的特征向量所组成的一组方 向。设有n×n阶对称正定矩阵Q,其共轭方向为 {d,=1,2,…,m},则有
(d)Qd=0,i≠j,i,j=1,2,…,m
也称这m个向量对Q共轭。对于n元正定二次目 标函数,依次沿n个共轭方向作一维搜索,则至多 在n步内可获得最优点,利用这一性质可以构造一 类无约束非线性规划算法——共轭方向法。
以一组共轭方向作为搜索方向来求解无约束非线性规划问题的一类下降算法。是在研究寻求具有对称正定矩阵Q的n元二次函数
f(x)=1/2xQ x bx c
最优解的基础上提出的一类梯度型算法,包含共轭梯度法和变尺度法。根据共轭方向的性质,依次沿着对Q共轭的一组方向作一维搜索,则可保证在至 多n步内获得二次函数的极小点。共轭方向法在 处理非二次目标函数时也相当有效,具有超线性的收敛速度,在一定程度上克服了最速下降法的锯齿形现象,同时又避免了牛顿法所涉及的海色(Hesse) 矩阵的计算和求逆问题。对于非二次函数,n步搜 索并不能获得极小点,需采用重开始策略,即在每进 行n次一维搜索之后,若还未获得极小点,则以负 梯度方向作为初始方向重新构造共轭方向,继续搜索。