吸附剂的再生是吸附领域的瓶颈问题,如何在吸附剂上实现有机污染物高效吸附和完全降解是研究热点和难点。本项目研发可重复使用的纳米碳基复合吸附材料,能够高效吸附水中微量的典型药物和个人护理品(PPCPs),并在再生或吸附过程中氧化降解吸附的PPCPs,同时实现吸附剂的再生和污染物的降解。 研制超细磁性生物碳、可再生颗粒碳纳米管、碳纳米管电极、多孔碳纳米管或石墨烯和负载金属催化剂的复合石墨烯吸附材料;利用球磨法、加热-过滤法、嵌插刚性分子法、自组装法,解决了纳米材料难分离、易团聚等缺点,在吸附材料内部产生更多的微孔和介孔,比表面积比改性前增大,利于吸附去除污染物。 研究该材料吸附典型PPCPs的特性和机制;通过吸附动力学、吸附等温线、pH影响、外加电压、共存离子影响等实验结果,发现制备的吸附材料对于马卡西平、双氯芬酸钠、四环素、环丙沙星、磺胺甲恶唑、扑热息痛等PPCPs的吸附能力比改性前均有不同程度的提高,负载金属催化剂的复合石墨烯吸附材料的吸附能力更是优于商业颗粒活性炭。 利用纳米碳材料的高稳定性和导电性,研究通过低温加热、类芬顿、电化学氧化和E-peroxone技术等再生方式,完全氧化降解吸附在材料上的PPCPs, 实现纳米吸附剂的再生和重复使用,使这些吸附材料至少可以重复利用五次;构建基于负载催化剂的纳米碳基复合材料的吸附电化学降解装置,阐明PPCPs快速吸附同时被电化学氧化降解的特性和机制。 本项目研究能拓展纳米碳材料在环境吸附领域的应用,为给水和污水处理中去除微量新兴污染物提供理论和技术支持。本项目发表SCI论文6篇,国际会议论文4篇,申请专利1项。