(1)色素的吸收光谱
太阳光不是单色光,如果将它通过三棱分光镜,可以看到由赤、橙、黄、绿、青、蓝、紫七种颜色的光所组成的连续光谱,称太阳光谱 (见图7-5)。 图7-5 太阳光的光谱
太阳可见光的波长大约在390~760 nm之间,波长与能量成反比。如果把叶绿体色素提取液放在光源和分光镜中间,就可以看到光谱中有些波段的光被色素吸收了,在光谱上出现黑线带,这种光谱叫叶绿体色素的吸收光谱。从叶绿体色素的吸收光谱可以看出:叶绿体色素对光的吸收具有选择性,叶绿素的吸收光谱的最强吸收带有两个(见图7-6):一个在波长为640~660 nm的红光部分,另一个在430~450 nm的蓝紫光部分。在光谱的橙光、黄光和绿光部分只有不明显的吸收带,其中尤以对绿光的吸收最少。由于叶绿素对绿光吸收最少,所以叶绿素的溶液呈绿色。从图中看出叶绿素a和叶绿素b相比,吸收光谱略有不同:叶绿素a的红光部分的吸收带宽些,偏向长光波方面,吸收峰较高;在蓝紫光部分的窄些,偏向短光波方面,吸收峰较低。
胡萝卜素和叶黄素的吸收光谱与叶绿素不同,其最大吸收带在400~500nm的蓝紫光区(图7-7),不吸收红光等长波光,而且在蓝紫光部分吸收的范围比叶绿素宽一些。
太阳的直射光含红光较多,散射光含蓝紫光较多。阴生植物中有较多的类胡萝卜素,可以利用类胡萝卜素吸收较多的蓝紫光,把能量转给叶绿素,在较弱的光下,仍能够进行一定强度的光合作用,这是植物在长期进化过程中对环境形成的一些适应特性。
(2)荧光现象和磷光现象
将叶绿素溶液盛于试管内,在透射光下看呈绿色,在反射光下看呈深红色(叶绿素 a为血红光,叶绿素b为棕红光),这种现象叫荧光现象。荧光现象产生的原因大致如下:
光具有波粒二象性,对光合作用有效的可见光的波长是在400—700 nm之间,同时光又 是一粒一粒地运动着的粒子流,每一粒子叫一个光子,光子所具有的能量,叫做光量子。光子携带的能量与光的波长成反比。每摩尔光量子具有的能量如下:
E=N hυ=Nhc/λ
式中E为能量(千卡),N为阿伏加德罗常数(6.02×1023),h为普朗克常数(6.6262×10-34JS),υ为频率(s-1),c是光速(2.9979×108m s-1),λ是波长(nm)。每摩尔光量子的能量通常是以千卡或爱因斯坦来表示。
当叶绿素分子吸收光量子后,就由低能级的基态提高到了一个高能级的激发态(图7-8)。,根据波尔(Bohr)理论,电子从近核低能轨道跃到远核高能轨道上为激发态(第一、二单线态),激发态的叶绿体分子极不稳定,又迅速由激发态恢复到基态,同时向空间发射光子,称为荧光。恒温下,荧光的光子要比吸收的光子能量低,所以放出的波长更长、颜色更红些,因而使叶绿素溶液在入射光下呈绿色,而在反射光下呈红色。
叶绿素的荧光现象说明叶绿素能被光所激发,而叶绿素分子的激发是其能将光能转变为化学能的前提。在整体植物中,叶绿素所吸收的光能被用于光合作用,因此看不到荧光现象。
当荧光出现后,立即中断光源,色素分子仍能持续短时间的放出“余辉”,称磷光现象。这种现象的原因是处于第一单线态的激发态的叶绿素分子,先以热能的形式丢失掉一部能量,转为一种亚稳定态(第一三线态),从亚稳定态回到基态时放出的光子便为磷光,其寿命比荧光长(荧光为10-9s,磷光为10-3—10-2s),但比荧光弱。