传统的火灾探测技术基于烟雾颗粒、温度等物理量的传感器,难以满足大空间、大范围火灾探测的需要。本项目旨在研究如何更好地利用视频图像实现对火灾事件的探测和预警。探究智能视频火灾探测的理论新方法和关键技术,改进已有算法在火灾视频特征提取、分析等方面的不足,在视频监控系统基础上实现实时的火灾监控。研究的重点包括以下四方面内容:1)针对可见光视频场景中光照变化、类似火焰颜色和运动物体干扰等因素及形成机制,在二分光模型的基础上研究稳定可靠的视频火焰光谱特征模型和提取方法;2)针对传统小波变换的不足,研究基于Contourlet的火焰、烟雾的方向性 纹理和高频特征提取与分析技术。3)分析视频场景中烟雾弥漫运动特性,研究可靠的烟雾模糊特征提取和分析方法;4)结合SVM、神经网络等方法对火灾特征进行学习和识别,保障识别率,降低误识率。