初出结晶器下口的铸坯没有完全凝固,只形成一个厚度较薄的(10-20mm)坯壳,中心还是高温液体,需要在结晶器下方设计支撑结构和零段喷淋以支撑和冷却铸坯。目前高效连铸小方坯结晶器下方普遍采用足辊结构支撑铸坯,并配合适量的喷水以进一步增加坯壳厚度。
足辊装置是在结晶器出口下方四周安装足辊,其安装位置与结晶器铜管对弧,以防对铸坯形成横向应力,对高拉速铸坯初出铜管的薄弱坯壳起支承作用,减少铸坯变形或漏钢,足辊对拉坯阻力影响较小,足辊调节不当、足辊间隙过大或足辊发生变形均会诱发铸坯菱变。足辊区的喷水冷却属于零段二次冷却系统,是对初出结晶器铜管薄而高温坯壳的强制冷却,一般设计都是喷在铸坯平面上。足辊装置和零段喷淋对薄坯壳的辅助支撑和均匀冷却,可增厚坯壳,控制菱变,保证连铸坯质量。
在高速连铸过程中,小方坯发生漏钢事故,冷钢粘结在足辊上导致停浇或划伤铸坯,清理足辊上的冷钢工作比较困难,对损坏的足辊及喷嘴需要更换。
连铸小方坯断面小,在高拉速条件下,由于结晶器冷却不均匀及结晶器铜管内气隙热阻的影响,使初出结晶器的坯壳薄且不均,容易产生漏钢,而且漏钢率比较高。连铸生产实践表明:大多数漏钢为角裂漏钢,发生在铸坯出结晶器下口一段距离后的角部,由铸坯纵向角裂引起。在连铸机拉速过快条件下,结晶器冷却不均、铜管倒锥度不合适等均能使铸坯在结晶器铜管内发生轻微的菱变,并伴有角部内裂,菱变铸坯受到零段喷淋的非对称冷却,特别是铸坯角部的冷却强度不足,促使角部裂纹进一步发展,当裂纹延展至坯面时便出现漏钢,拉漏直接影响铸机产量和连浇率 。