离散傅立叶变换和离散余弦变换常常被使用在讯号处理 和影像处理,也常被用来当作解偏微分方程式时更有效率的方法。离散傅立叶变换也可用在运算折积或是乘上很大的整数。下列只列出一些例子。
影像处理
离散余弦变换被用在 JPEG 影像压缩、MJPEG、MPEG、DV和 Theora影片压缩上。压缩时使用NxN'格的二维的离散余弦变换(DCT-II)然后再被量化且用熵编码法编码,通常N为8,而DCT-II的运算就用在该格的每一行和每一排,结果会生成8x8的变换系数矩阵,其中(0,0)(左上角)的值是直流分量(频率为0),随着水平或垂直的编号增加,代表水平或垂直的空间频率增加,如图1所示。
在影像处理方面,利用二维的离散余弦变换可以分析并且描述非常规的图形加密方法,像是在二维图像平面中插入非可见的二进位制水印。 利用不同的方向,DCT-DWT混杂的转换也可以用来去除超音波影像的噪声。三维的离散余弦变换可以被用来转换在使用水印影像迁入的影片资料或是三维影像资料。
频谱分析
当使用离散傅立叶变换来做频谱分析时,{xn}的数列通常代表着从讯号 x(t)中在均匀的时间点做取样所得到的有限集合,这样将连续时间点经取样离散化后,也将原本的傅立叶变换转变成离散时间傅立叶变换(DTFT),通常也因此产生了混叠的失真。为了要最小化这种失真,选择适当的取样频率是重点(详情请看取样定理)。同样的,将一个非常长(或无限)的数列转变成一个容易处理的大小,会因此造成失真(Spectral leakage),选取一个适当的子数列长度是最小化这个问题的关键点。当资料量大于达到理想频率分辨率所需的适量时,标准的作法是使用多个DFT,例如产生频谱图的时候。如果所期望的结果是功率频谱而且有噪声或随机讯号出现在资料内的话,多个DFT的振幅平均值可以用来减少频谱的变异性,Welch method和Bartlett method就是这种技术。一般处理这种用来估计有噪声的讯号的功率频谱的方法就称为频谱估计。
其实会造成失真的主要源头就是DFT本身,因为DFT是将DTFT这种连续性的频域做离散取样的结果,可以利用提高DFT的频率分辨率来减缓这问题。
这种方法有时候也被认为是零填充,这是一种被用在快速傅立叶变换的一种特别应用。这种因为值为零的取样点而产生的乘法与加法比原本的FFT产生偏移还要没有效率。
如上面所言,失真(leakage)的问题对DTFT的频率分辨率造成了限制,因此会对透过提高频率分辨率的效益造成限制。
偏微分方程式
离散傅立叶变换时常被用来解偏微分方程式,其中DFT是被用来近似傅立叶级数,其优点在于将讯号延伸为复数指数函数
用快速傅立叶变换处理影像艺术面的分析
我们必须使用没有损害的方法去得到一些关于艺术稀有的资讯(从HVS的观点是着重于色度法以及空间资讯)。我们可以透过观察色彩变化或是测量表面一制性的变化来了解艺术,因为整个影像是非常大的,所以我们会使用一个双生的余弦窗去撷取影像: