绝热演化作为一种新型量子计算模型,当它刚被提出时就受到了广泛的关注。本文在相关绝热计算研究的基础上,考虑了在绝热量子计算环境下,绝热搜索算法中若干关键问题,研究了绝热演化路径的适用性、绝热算法的量子线路模型、先验概率分布对设计高效绝热算法的作用、推广量子态保真度与绝热算法性能之间关系等。 本文得到的主要结论是: 1.讨论了一般化模型插值路径在绝热计算中的局限性。研究发现,即使系统的保真度不为零,若该模型被赋予不恰当的实例,相对常规类型绝热演化,所得到绝热计算将无优势甚至可能完全失效,即算法时间复杂度无无穷大,从而提示我们在设计绝热算法时,此类型演化路径的使用并不能随意。 2.首次全面地研究了额外驱动哈密顿量在绝热计算中的实用性,即经过研究发现,当额外驱动哈密顿量形式固定时,若其前面系数配置不当的话,所得绝热算法将会完全失效;当系统绝热演化路径形式相对固定,但允许额外驱动哈密顿量形式变化时,仅特定形式的额外驱动哈密顿量可以被用来提高绝热算法效率,而此形式正好为已知几乎所有文献中所广泛使用,从而给出这一现象的一种很好解释。 3.解决了全局绝热演化的正确量子线路实现问题,所获的线路模型下时间分片数与绝热算法的时间复杂度是一致的,而之前能够得到的结论是局部绝热计算的演化时间是与其对应量子线路模型实现时的时间分片数相吻合的;基于此,首次给出一种非线性绝热演化的量子线路模型实现。 4.将常规绝热搜索算法中所有数据元素等幅叠加方式看成是以这些数据元素的先验概率分布方式组织时的特殊情形,研究了数据元素的先验概率分布对绝热算法性能的影响。并且发现,若适当利用这些先验概率分布的信息,相应的绝热算法性能可以大大得到改善。 5.改进了相关文献给出布尔函数估计的绝热算法设计,得到即使不添加辅助驱动哈密顿量的常规绝热演化亦能够于常数时间复杂度内实现布尔函数估计的目标。 6. 证明了具有一般化模型的绝热演化同样可以利用系统初末态之间的保真度来估算对应算法时间复杂度,从而可以摆脱依赖绝热定理来估算绝热算法时间复杂性度的限制,同时也为估算绝热计算所需关键系统资源提供导向作用;另一方面,这一研究结果也可以看成是对之前相关文献中提出相关公开问题的一个部分回答。