焊接残余应力和变形,一直是国内外焊接学者们关注的焦点问题。自从出现焊接技术以来,人们就已经注意到在焊接结构的生产、制造过程中不可避免的产生焊接残余应力和变形。焊接残余应力和变形不但可能引起焊接工艺缺陷,而且在一定条件下将影响结构的承载能力:诸如强度,刚度和受压稳定性;除此以外还影响到结构的加工精度和尺寸稳定性。因此,一直以来,焊接学者们不断的探索对焊接残余应力和变形的控制、调整和减小的工艺方法和措施。
根据ASME 压力管道规范B31和我国钢制压力容器焊接规程的要求,当材料厚度大于38 mm时,需对其进行焊后热处理(Post weld heat treatment,PWHT),其目的是去氢、消除焊接残余应力和恢复材料塑性。和其他方法相比,焊后热处理消除焊接残余应力被认为是最有效的。全焊接阀体球阀的制造是将阀心、阀体、连接体和密封圈等部件装配完之后,采用焊接的方法将阀体和连接体连成一体。由于焊接是最后一道工序,为了保证焊接变形不得影响阀心的转动和阀门的密封,必须采取措施控制焊接变形和残余应力,保证焊接结构尺寸的稳定性,提高焊接结构使用安全性。根据文献,阀体最大残余拉应力分布在阀体外表面,而内表面呈现出压应力,为了确保结构的承载能力以及抗腐蚀性能,主要降低阀体外表面的残余拉应力。可是由于全焊接阀体球阀采用橡胶密封圈密封,因此为了防止密封圈的损坏,导致密封性能降低,焊后不能采用热处理进行消应力。
在大的压力容器和管道焊接中,机械应力消除法(Mechanical stress relieving, MSR)经常被认为是一种更方便更经济的应力消除法。根据ASTM A105/A 105M-01 标准规定,对于焊接阀体阀门,焊后必须进行工作压力下的水压试验,检验焊接阀门的密封性。在水压试验的基础上,建立了阀体机械应力消除法试验加载压力与加载时间的关系,采用有限元模拟和试验测量相结合的方法研究机械应力消除法对阀体焊接残余应力的影响 。