对于海洋工程上普遍采用的圆柱形断面结构物,这种交替发放的泻涡又会在柱体上生成顺流向及横流向周期性变化的脉动压力。如果此时柱体是弹性支撑的,或者柔性管体允许发生弹性变形,那么脉动流体力将引发柱体(管体)的周期性振动,这种规律性的柱状体振动反过来又会改变其尾流的泻涡发放形态。这种流体一结构物相互作用的问题被称作“涡激振动”(Vortex-Induced Vibration :VIV)。
在处理涡激振动问题时,把流体和固体弹性系统作为一个统一的动力系统加以考虑,并找到两者的耦合条件,是解决这个问题的重要关键。在涡激振动过程中,流体的动压力是一种作用于弹性系统的外加载荷,动压力的大小取决于弹性系统振动的位移、速度和加速度;另一方面,流体动压力的作用又会改变弹性系统振动的位移、速度和加速度。这种互相作用的物理性质表现为流体对于弹性系统在惯性、阻尼和弹性诸方面的耦合现象。
由惯性耦合产生附连质量,在有流速场存在的条件下,由阻尼耦合产生附连阻尼,由弹性耦合产生附连刚度。流体的附连质量、阻尼和刚度取决于流场的流动特征参量(诸如流速、水深、流量等)、边界条件以及弹性系统的特性,其关系式相当复杂。用实验或理论方法求出这些附连的量,是水弹性问题研究中的重要课题。
实验证明,漩涡的发放频率f可用无量纲参数斯特劳哈尔数St(Strouhal Number)来表示,表达式为:
f=St*V/D
St是构件剖面形状与雷诺数Re的函数,其定义式为St=D/(V*T)。
其中:V为垂直于构件轴线的速度(m/s);
D为圆柱直径或柱体的其他特征长度(m);
T为相关的特征时间(s)。