模糊系统理论是在美国加州大学LA.Zadeh教授于1965年创立的模糊集合理论的数学基础上发展起来的,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊控制等方面的内容。
早在20世纪20年代,就有学者开始思考和研究如何描述客观世界中普遍存在的模糊现象。1923年,著名的哲学家和数学家B.Russell在其有关“含模糊性”的论文中就认为所有的自然语言均是模糊的,如“年轻的”和“年老的”都不是很清晰的或准确的概念。它们没有明确的内涵和外延,实际上是模糊的概念。然而,在一个特定的环境中,人们用这些概念来描述某个具体对象时却又能让人们心领神会,很少引起误解和歧义。与B.Russell同时代的逻辑学家和哲学家人lKasiewicz发现经典的:值逻辑只是理想世界的模型,而不是现实世界的模型,因为它在对待诸如“某人个子比较高”这一客观命题时不知所措。他在1920年创立厂多值逻辑,为建立正式的模糊模型走出了关键的第一步。但是,多值逻辑本质上仍是精确逻辑,它只是二值逻辑的简单推广。
1937年,英国学者M.Nack也曾对“含模糊性”的问题进行过深入研究,并提出了“轮廓‘致”的新概念。这实际上是后来的“隶属度函数”这一重要概念的思想萌芽。遗憾的是,他在描述某一概念的“真实接近程度”时,错用了“用法的接近程度”,最终与模糊集合擦肩而过,失之交臂。应该说他已经走到了真理的边缘,可谓模糊系统理论的鼻祖。
1965年,Zadell在其“FuzzySets”论文中首次提出了表达事物模糊性的重要概念——隶属度函数,从而突破7,19世纪末德国数学家G.Contor创立的经典集合理论的局限性。借助于隶属度函数可以表达一个模糊概念从“完全不属于”到“完全隶属于”的过渡,从而能对所有的模糊概念进行定量表示。隶属度函数的提出奠定丁模糊系统理论的数学基础。这样,像“冷”和“热”这些在常规经典集合中无法解决的模糊概念就可在模糊集合中得到有效表达。模糊集合为计算机处理语言信息提供了一种可行的方法。
1966年,P.N.Marinos发表了有关模糊逻辑的研究报告。这一报告真正标志着模糊逻辑的诞生。模糊逻辑和经典的二值逻辑的不同之处在于:模糊逻辑是一种连续逻辑。一个模糊命题是一个可以确定隶属度的句子,它的真值可取[o,U]区间中的任何数。很明显,模糊逻辑是二值逻辑的扩展,而二值逻辑只是模糊逻辑的特例。模糊逻辑有着更加普遍的实际意义,它据弃了二值逻辑简单的肯定或否定,把客观逻辑世界看成是具有连续隶属度等级变化的,它允许一个命题亦此亦彼,存在着部分肯定和部分否定,只不过隶属程度不同而已。这就为计算机模仿人的思维方式来处理普遍存在的语言信息提供了可能,因而具有划时代的现实意义。
1974年,Zadeh进一步研究了模糊逻辑推理。此后,模糊系统理论逐渐成为一个热门的课题。建立在模糊逻辑基础止的模糊推理是一种近似推理,可以在所获得的模糊信息前提—F进行有效地判断和决策。而基于二值逻辑的演绎推理和归纳推理此时却无能为力,因为它们要求前提和命题都是精确的,不能有半点含糊。
模糊系统在理论和应用两方面都取得了长足的进步,为包括模糊控制在内的先进技术提供了强有力的理论支撑。模糊系统理论和应用的主要研究领域包括如F几方面内容。
(1)模糊系统理论基础研究为了开拓更新更J“的应用,完善模糊系统理论的理论体系,必须加强以基本概念为核心的模糊系统理论和模糊方法论的研究,其重点在于应用模糊系统理论对人的思维过程和创造力进行理论研究。同时也要对已有的基础理论中的基本概念,如模糊概念、模糊推理的概念等进行推敲;对模糊推理中的多值理论、统一性理论、推理算法、多变量分析及模糊量化理论等进行研究;对模糊方法论中的模糊集合论、模糊方程、模糊统计和模糊数学,对思维功能与模糊系统的关系、模糊系统评价方法、模糊系统与其他系统,特别是神经网络等相结合的理论问题进行研究。
(2)模糊计算机方面的研究其目标是实现具有模糊关系特征的高速推理计算机,并希望在系统小型化、微型化的同时,开发出可以大大提高开发效率的模糊计算机。这方面的研究包括模糊计算机结构、模糊逻辑器件、模糊逻辑存储器、模糊编程语言以及模糊计算机操作系统软件等。
(3)机器智能化研究其目的是实现对模糊信息的理解,对具有渐变特征模糊系统的控制以及对模式识别和决策智能化的研究。它主要包括智能控制、传感器、信息意义理解、评价系统、具有柔性思维和动作性能的机器人、具有语言理解能力的智能通信及具有实时理解能力的图像识别等。
(4)人机工程的研究其目标是实现能高速模糊检索并能对未能预测的输入条件作适当判断的专家系统,以及对人与人之间的界面如何能尽量接近人机之间的界面,如何才能满足新系统要求的研究。这方面共要包括模糊数据库,模糊专家系统,智能接口和对人的自然语言的研究。
(5)人类系统和社会系统的研究其目的在于利用模糊系统理论解决充满不确定性的人的复杂行为、心理分析,社会经济的变化趋势,各种社会现象的模型、预测以及决策支持等。这方面包括对各种危机的预测和完全评价、对有人为失误系统的评价方法、建立不良结构系统的模型、模糊理论在系统故障检测与诊断中的应用、人的行为与心理分析等。
(6)自然系统的研究其目的在于利用模糊系统理论来解决复杂自然现象的模型和解释等。这方面还包括对各种物理、化学现象的进一步解释,对自然环境大气圈、地球生物圈、水圈、地圈的研究。
对待模糊系统理论,学术界一直有两种不同的观点,其中持否定态度的观点大有人在,客观地说,有如下两个主要方面的原因。
①推崇模糊系统理论的学者在强调其不依赖于精确的数学模型时过分地夸大了其功效,而正确的观点似乎应该是模糊系统不依赖于被控对象的精确数学模型,当然它也不应该拒绝有效的数学模型。
②模糊系统理论的确还有许多不完善之处,比如模糊规则的获取和确定、隶属度函数的选择以及模糊系统稳定性问题,至今还未得到完善的解决。
尽管如此,大量的:工程系统已经应用了模糊系统理论。其中,模糊控制就是模糊系统理论应用最有效、最广泛的领域。模糊控制公各种领域出入意料地解决了传统控制理论尤法解决或难以解决的问题,并取得了一些令人信服的成效。
[编辑]