模糊自整定PID控制器由参数可调整PID控制器和模糊控制器两部分组成,其控制原理框图如图1所示。
图1
其设计思想是:先建立PID控制器的三个参数与偏差e和偏差变化率ec的模糊关系即模糊规则,然后以偏差e和偏差变化率ec作为输入量,通过模糊规则对PID参数进行在线修改以满足不同时刻偏差e和偏差变化率ec对PID参数自调整的要求在系统中,模糊控制器是设计的核心 。
模糊控制器如图2所示。模糊控制器的工作过程可分为3个过程:模糊化、模糊逻辑推理和精确化。
图2
(1)知识库
知识库包括模糊控制器参数库和模糊控制规则库。模糊控制规则建立在语言变量的基础上。语言变量取值为“大”、“中”、“小”等这样的模糊子集,各模糊子集以隶属函数表明基本论域上的精确值属于该模糊子集的程度。因此,为建立模糊控制规则,需要将基本论域上的精确值依据隶属函数归并到各模糊子集中,从而用语言变量值(大、中、小等)代替精确值。这个过程代表了人在控制过程中对观察到的变量和控制量的模糊划分。由于各变量取值范围各异,故首先将各基本论域分别以不同的对应关系,映射到一个标准化论域上。通常,对应关系取为量化因子。为便于处理,将标准论域等分离散化,然后对论域进行模糊划分,定义模糊子集,如NB、PZ、PS等。
同一个模糊控制规则库,对基本论域的模糊划分不同,控制效果也不同。具体来说,对应关系、标准论域、模糊子集数以及各模糊子集的隶属函数都对控制效果有很大影响。这3类参数与模糊控制规则具有同样的重要性,因此把它们归并为模糊控制器的参数库,与模糊控制规则库共同组成知识库。
(2)模糊化
将精确的输入量转化为模糊量F有两种方法:
a.将精确量转换为标准论域上的模糊单点集。
精确量x经对应关系G转换为标准论域x上的基本元素.
b.将精确量转换为标准论域上的模糊子集。
精确量经对应关系转换为标准论域上的基本元素,在该元素上具有最大隶属度的模糊子集,即为该精确量对应的模糊子集。
(3)模糊推理
最基本的模糊推理形式为:
前提1 IF A THEN B
前提2 IF A′
结论 THEN B′
其中,A、A′为论域U上的模糊子集,B、B′为论域V上的模糊子集。前提1称为模糊蕴涵关系,记为A→B。在实际应用中,一般先针对各条规则进行推理,然后将各个推理结果总合而得到最终推理结果。
(4)精确化
推理得到的模糊子集要转换为精确值,以得到最终控制量输出y。常用两种精确化方法:
a.最大隶属度法。在推理得到的模糊子集中,选取隶属度最大的标准论域元素的平均值作为精确化结果。
b.重心法。将推理得到的模糊子集的隶属函数与横坐标所围面积的重心所对应的标准论域元素作为精确化结果。在得到推理结果精确值之后,还应按对应关系,得到最终控制量输出y 。