水文学与气象学分化之后,它们在各自不同的领域里研究了水分循环系统的不同环节。而近些年来,包括大气、陆地和海洋的水分循环系统的综合模型的研究受到了普遍重视,越来越得到发展。
早在 1965 年斯马戈林斯基等就进行了有简单水份循环的大气环流的数值试验。这个水份循环包括大尺度运动的水汽的平流,地表的蒸发,降水和为了模拟水分对流过程所作的人工校正,选择了无任何热容量的完全潮湿的地表作为下边界,初始条件为完全干燥和等温的大气。其北半球平均降雨率的计算结果与布德科求得的年平均降雨的估算值相接近。
海洋是水分循环过程中水的贮藏库,海洋和大气,通过热量、水汽和动量的交换和输送而耦合在一起,最初研究海气耦合模式的是真锅 (1969 年 ) 。近十几年来,这方面的研究已经很多。随着卫星技术的提高,以后可以由卫星提供海温、海面应力资料,和由卫星测定海洋区域的降水率和水汽浓度,将会更大地增强模式对于水圈的计算能力和计算精度。
我们对于大气和陆上下垫面之间相互作用的许多方面,及其对区域、全球气候的影响,都还了解不够,有待于有效地模拟。土壤表面上热量和水汽的收支关系是很复杂的。土壤水分特别重要,因为它能贮藏好几个月,从而为地气系统提供一种存储,己有的试验表明,通过大气环流模式所模拟的降水、温度和环流,对土壤湿度非常敏感。初始土壤湿度对环流和降水的影响可长达几周和几个月。雪盖的影响主要是通过反照率,可以反射掉大部分入射辐射,从而影响地表热量平衡。模式试验表明,当撒哈拉沙漠和美洲高原的反照率增加到 0.45 时,那些地区的降水减少 1 一 5 毫米 / 日,即反照率的增加将会使土壤沙漠化。
在研究宏观水分循环系统的同时,也有不少人在研究水分循环的微观过程。例如,把入渗、排水、植物吸水、蒸腾和蒸发这些事件作为发生在一小块单一地面以及其上和其下的局部小尺度过程,进行水分循环中的土壤 -- 植物 -- 大气连续统一的研究,可以为宏观模型的参数化提供物理依据。
最具有综合能力的水分循环系统的模式,必须是能够描述与水分循环系统有关的所有物理变量或参数以及它们复杂的相互作用,这样的模式是近期内无法完成的。但是经过适当简化的综合的水分循环模式却有可能实现。
我们国家在水文与气象的分支学科上,与世界先进水平差距不大,但是水文气象这个边缘学科却是一个十分薄弱的环节。不仅在理论研究上做的不多,而且在应用方面也很落后,如果说,在过去的几十年里,仅仅依靠水文学就可以基本满足水利工作的需要,那么,在国民经济和科学技术发展的新的形势下,传统的方法已经远远不够。
水资源评价决定于气象因子,要弄清一个地方的水资源总量,提高水资源评价的计算精度,必须依靠水文与气象方法的密切结合。
一个地方的旱涝,是一个水利问题,也是一个气象问题。在水文与气象工作中各自进行的旱涝规律分析和长期趋势预报,其研究的对象都是水分循环这同一水文气象系统,所使用的方法也基本类似,完全可以一起协作进行。
在水利工程规划设计中,特别强调经济效益和决策的科学化、民主化。尤其是耗资巨大的大型水利工程其决策过程更为慎重,这就迫使人们不能只停留在使用统计方法给出一个数,而是必须要在气象成因上寻找科学依据对规划设计方案进行气象上的合理性分析,改进水文水利计算结果,使水利工程建筑在更为安全可靠和经济合理的基础上。
由于经济的发展,洪灾损失越来越大。又由于水资源紧缺、能源紧缺等原因。使得国民经济各部门对于水利工程管理工作提出了更高的要求,迫切要求水利工程提高管理水平,充分发挥水利工程的综合效益。过去只强调降低水位保证防洪的水库,必须千方百计去解诀防洪与兴利的矛盾,必须加强水文气象的科学知识和技术方法的应用,必须重视水文气象工作。
江河的防汛工作,过去使用水文预报和利用分蓄洪区,基本上可以防御较大洪水。在防洪形势严重时,也可以采取临时扒口和有计划的分洪来避免大提溃决的灾难局面的发生。可是由于分蓄洪区的人口越来越密集,工农业生产越来越发展,使用分蓄洪区的难度越来越大,扒口分洪的办法更难实施,因此就要更加重视暴雨洪水的预报工作。暴雨洪水的监测、预报和警报系统将是近几年来我们国家水文与气象最有前途的结合点之一。