造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

流体动力学研究点

2022/07/16141 作者:佚名
导读:流体动力学应力张量 根据无粘性流体对于剪切变形没有抗拒能力和静止流体不能承受剪应力的事实可以断言:在无粘性流体或静止流体中,剪应力为零,而正应力(即法向应力)pxx=pyy=pzz=-p。p称为无粘性流体或静止流体的压力函数,它表征无粘性流体或静止流体在任一点的应力状态。在流体动力学中可以用px、py、pz或九个量pij(i,j=1,2,3)的组合可完全地描写一点的应力状况。pij组成的二阶张量称

流体动力学应力张量

根据无粘性流体对于剪切变形没有抗拒能力和静止流体不能承受剪应力的事实可以断言:在无粘性流体或静止流体中,剪应力为零,而正应力(即法向应力)pxx=pyy=pzz=-p。p称为无粘性流体或静止流体的压力函数,它表征无粘性流体或静止流体在任一点的应力状态。在流体动力学中可以用px、py、pz或九个量pij(i,j=1,2,3)的组合可完全地描写一点的应力状况。pij组成的二阶张量称为应力张量。

流体动力学应力张量和变形速率张量的关系

牛顿粘性定律
只适用于剪切流动(见牛顿流体)。对于一般的流动,假设:(1)运动流体的应力张量在运动停止后趋于静止流体的应力张量,于是
,式中pij为应力张量;p为压力;δij为克罗内克符号;
为偏应力张量(2)偏应力张量的各分量是速度梯度张量
各分量的线性齐次函数(这个假设是牛顿粘性公式逻辑上的推广);(3)流体是各向同性的。由此可以推出应力张量和变形速率张量sij的关系:

流体动力学动量方程和能量方程

动量方程是动量守恒的数学表达式,它的矢量形式为:

式中v为速度矢量;F为作用在单位质量上的质量力;p为压力;ρ、μ分别为流体密度和动力粘性系数。上式表明单位体积上的惯性力等于单位体积上的质量力加上单位积上的压力梯度和粘性应力。能量方程是能量守世的数学表达式,它可以写成;

式中T、s分别为流体的热力学温度和单位质量流体的熵;k为热导率;q为由于辐射或其他原因在单位时间内传入单位质量流体中的热量;Φ为粘性耗损函数,其表达式为

流体动力学涡旋的动力学性质

涡旋的动力学性质主要体现在开尔文定理和亥姆霍兹定理上。如果流体是无粘性、正压的(见正压流体),且外力有势,则涡旋不生不灭,而且涡线、涡管总是由相同的流体质点组成,涡管强度不随时间变化。只有流体的粘性、斜压性和外力无势这三个因素才能使涡旋产生、发展变化和消亡.

流体动力学伯努利积分和拉格朗日积分

无粘性的、正压的流体在有势外力作用下,其运动方程在定常和无旋两特殊情形下可以积分出来。运动方程的这两个第一积分分别称为伯努利积分(见伯努利定理)和拉格朗日积分。它们(特别是伯努利积分)无论在流体力学的理论研究或实际应用上都十分有用。

流体动力学动量定理

对于大部分流体力学问题,为了了解整个流场的情况,需要在一定的初始条件和边界条件下解微分形式的流体力学基本方程组。但是,有时只需要知道某些整体性的特征量(例如流体对于在其中运动着的物体的反作用力和整个流动系统的能量损失等),就可以利用积分形式方程组中的整体性定理——动量定理和动量矩定理,根据边界上给定的流动参数直接求出感兴趣的特征量,而不需要解微分方程。上述方法简单易行,在流体动力学中有着广泛的应用。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读