造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

涉水结构物渗漏无热源光纤定位定向系统及监测方法发明内容

2022/07/16156 作者:佚名
导读:涉水结构物渗漏无热源光纤定位定向系统及监测方法专利目的 《涉水结构物渗漏无热源光纤定位定向系统及监测方法》提供一种涉水结构物渗漏无热源光纤定位定向系统及监测方法,具有无需加热、分布式、多向性、同步性等特点,在降低监测成本、提升监测精度及工程实用化等方面具有突出优势。 涉水结构物渗漏无热源光纤定位定向系统及监测方法技术方案 《涉水结构物渗漏无热源光纤定位定向系统及监测方法》的一种涉水结构物渗漏无热源

涉水结构物渗漏无热源光纤定位定向系统及监测方法专利目的

《涉水结构物渗漏无热源光纤定位定向系统及监测方法》提供一种涉水结构物渗漏无热源光纤定位定向系统及监测方法,具有无需加热、分布式、多向性、同步性等特点,在降低监测成本、提升监测精度及工程实用化等方面具有突出优势。

涉水结构物渗漏无热源光纤定位定向系统及监测方法技术方案

《涉水结构物渗漏无热源光纤定位定向系统及监测方法》的一种涉水结构物渗漏无热源光纤定位定向系统,包括若干个通过旋转支架连接的渗流监测装置,所述渗流监测装置包含前后对称分布的第一渗流监测单元和左右对称分布的第二渗流监测单元;

所述第一渗流监测单元包含固定监测光纤单元的第一载纤凹道,第一载纤凹道外设有载纤护层,第一载纤凹道两端分别设有左载纤端和右载纤端,左载纤端通过左连柄与左连球连接,右载纤端通过右连柄与右连球连接,左连球和右连球铰接在横梁支架两端,横梁支架向左右两侧延伸有左销轴和右销轴;

所述第二渗流监测单元包含固定监测光纤单元的第二载纤凹道,第二载纤凹道的两端分别设有上载纤弧端和下载纤弧端,上载纤弧端通过上弧形连柄与上连轴球连接,下载纤弧端通过下弧形连柄与下连轴球连接,上连轴球和下连轴球铰接在山形端梁的两端,山形端梁上延伸有山形凸柱,山形凸柱内设有与左销轴和右销轴配合的圆锥孔;

所述旋转支架包含第一支撑架构柱和第二支撑架构柱,所述第一支撑架构柱一端与横梁支架连接,另一端与底圆转台连接,底圆转台上安装有上圆转台,第二支撑架构柱一端与另一个渗流监测装置的横梁支架连接,另一端插入到上圆转台中,底圆转台和上圆转台中心安装有通底竖梁,第一支撑架构柱和第二支撑架构柱可分别绕通底竖梁转动,通底竖梁上下端设有转台圆槽用于将通底竖梁封闭。

作为优选,所述横梁支架包含上水平横梁和与上水平横梁连接的下水平横梁,上水平横梁和下水平横梁的两端分别延伸左架构梁和右架构梁,上水平横梁和下水平横梁的左架构梁和右架构梁分别与左连球和右连球铰接,上水平横梁和下水平横梁的中部分别设有上端槽和下端槽,上端槽与第一支撑架构柱连接,下端槽与另一个旋转支架的第一支撑架构柱连接。

作为优选,所述上水平横梁设有T型状横梁卡槽,下水平横梁设有沿T型状横梁卡槽运动的横梁凸台。

作为优选,所述监测光纤单元包含一根渗流测量光纤和两根标定光纤,两根标定光纤位于渗流测量光纤的两侧,渗流测量光纤外套有硬质钢圈,标定光纤从内到外依次套有绝热隔层和硬质护层,渗流测量光纤外设有依次连接的上凹边内层、左凸边内层、下凹边内层和右凸边内层,上凹边内层外依次设有上凹边中层和上凹边外层,左凸边内层外依次设有左凸边中层和左凸边外层,下凹边内层外依次设有下凹边中层和下凹边外层,右凸边内层外依次设有右凸边中层和右凸边外层。凹形结构的最底端将极容易汇集周边区域可能的渗流水体,放大了小渗流的作用效果,与最底端的渗析棒配套使用,大大提高了对微弱渗漏或初期渗漏的辨识能力,该弧形截面结构将最大程度地扩大渗流区域渗流水体在渗流测量光纤上的停留时间及接触面积,对于待测区渗流位置的定位具有较高的精度保证作用;除此之外,上凹边外层具有防渗、防腐性能,且设计了与其截面形状类似的上凹边中层与上凹边内层紧接,三层凹状设计结构提高了该渗流监测专用光缆的强度及韧性,可起到保护内部结构及延长使用寿命等效果。其中硬质护层在绝热隔层的外部,绝热隔层内侧与标定光纤接触,在渗流水体作用到待测区域时,在绝热隔层的作用下标定光线处于与外界无任何热量接触的状态,其将作为参考标定用光纤,对称分布布置的另一个标定光纤可以对参考标定用光纤的结果进行二次校正,其将最大程度地确保参考标准的客观准确性。左凸边外层和右凸边外层与凹边外层相反的凸边结构,该相反的对应设计大大增加了渗流专用光缆的截面积,提高了监测装置与待测结构体之间更密实的接触与连接,增强了监测装置与待测结构体的协同性,且将其布置成左右各三层结构,作用之一是为了增加标定光纤处的隔层厚度,且材料强度及韧性由内到外不断增加,不但提高了其内部与标定光纤的柔性过渡连接,还增加了抵抗外部的较大渗流水压力的作用,左凸边外层和右凸边外层具有抗腐蚀性能,提高了其与渗流水体长期共存的能力,在可能掺杂腐蚀性离子的复杂环境下,其渗流监测具有较好功效。

作为优选,所述渗流测量光纤两边分别与上渗析棒和下渗析棒连接,上渗析棒依次穿过硬质钢圈、上凹边内层、上凹边中层和上凹边外层与外界渗漏水流相接触,下渗析棒依次穿过硬质钢圈、下凹边内层、下凹边中层和下凹边外层与外界渗漏水流相接触。

作为优选,所述监测光纤单元外安装有外圆护壁,所述外圆护壁包含左上外圆护壁、左下外圆护壁、右上外圆护壁和右下外圆护壁,左上外圆护壁、左下外圆护壁、右上外圆护壁和右下外圆护壁形成了凹凸型载纤腔,监测光纤单元位于凹凸型载纤腔内,左上外圆护壁和右上外圆护壁之间通过上载纤扣锁紧,左下外圆护壁和右下外圆护壁通过下载纤扣锁紧,左上外圆护壁和左下外圆护壁分别绕左圆转环转动,右上外圆护壁和右下外圆护壁分别绕右圆转环转动。外圆护壁的近似圆形截面将凹凸设计的监测光纤单元中凹处部分进行二次补充,将布置于内部的渗流专用光缆组成一个外截面近似圆形的结构,弥补了其独特结构所带来的生产、运输及布设中存在的可能弊端;外圆护壁可以绕着左圆转环和右圆转环开启,外圆护壁内部的凹凸型载纤腔可以将《涉水结构物渗漏无热源光纤定位定向系统及监测方法》的渗流专用光缆精密地嵌入到凹凸型载纤腔内,外圆护壁顶部和底端的上载纤扣与下载纤扣将外圆护壁牢固闭合,防止外圆护壁松动或者外界人为等其他因素的干扰;且外圆护壁与凹凸型载纤腔之间是空腔设计,为可能的使用操作预留了空间。

在《涉水结构物渗漏无热源光纤定位定向系统及监测方法》中,第一支撑架构柱与上水平横梁中的上端槽或者下水平横梁的下端槽连接,第一支撑架构柱另一端与底圆转台相连,下旋转螺纹端与底转台螺槽相连之后,其一端的渗流监测装置可以围绕着通底竖梁进行与另一端渗流监测装置无抵触的360°无死角自由转动,上旋转螺纹端的一端与其对应侧的支撑架构柱相连,上旋转螺纹端的另一端与上转台螺槽相连,其可以带动通过对应侧链接螺纹端相连接的渗流监测装置绕着通底竖梁在另一侧做无干扰360°自由转动;上圆转台与底圆转台上下错动布置可以实现临近装置互不干扰的运转,可以对不同待测区域进行任意角度及坡度布置,上下转台圆槽的布置结构将上圆转台与底圆转台牢固的固定于通底竖梁处。

作为优选,所述第二载纤凹道内表面安装有渗漏网筛,渗漏网筛的表面为蜂窝状。

作为优选,所述左销轴和右销轴上均设有一圈圆弧凹槽,山形凸柱上表面上设有销孔,销孔内插入销,通过销插入圆弧凹槽固定左销轴和右销轴。

一种涉水结构物渗漏无热源光纤定位定向系统的监测方法,包括以下步骤:

第一步,准备普通单模裸光纤数根,基于第一渗流监测单元和第二渗流监测单元结构,配备制作成数根定长度的监测光纤单元;

第二步,绕着左圆转环和右圆转环将左上外圆护壁、左下外圆护壁、右上外圆护壁和右下外圆护壁打开,将监测光纤单元安置到凹凸型载纤腔内,然后旋动左圆转环和右圆转环将左上外圆护壁、左下外圆护壁、右上外圆护壁和右下外圆护壁合拢,利用上载纤扣和下载纤扣将两端分布的左上外圆护壁、左下外圆护壁、右上外圆护壁和右下外圆护壁扣合,后将监测光纤单元缠绕到监测光纤单元滚轮上,运输至渗流待监测部位;

第三步,调节上水平横梁上的横梁卡槽,将下水平横梁中的横梁凸槽沿着横梁卡槽直线滑动,最后将上水平横梁与下水平横梁旋在一起平行布置,后拧动左侧的上下对称分布的左销轴,将其插入在左侧山形凸柱中的圆锥孔,然后将销插入销孔中固定左销轴,同样方法,拧动右侧的上下对称分布的右销轴,将其插入在右侧山形凸柱中的圆锥孔中,然后将销插入销孔中固定右销轴中;

第四步,待将监测光纤单元运输至待测区域之后,旋开上载纤扣及下载纤扣,打开左上外圆护壁、左下外圆护壁、右上外圆护壁和右下外圆护壁将监测光纤单元从凹凸型载纤腔中取出,将一定长度的监测光纤单元放置到两端对称分布的内壁设有渗漏网筛的第二载纤凹道中,将另一段定长度的监测光纤单元放置到内壁设有渗漏网筛的第一载纤凹道内;通过左侧的下连轴球和上连轴球将配置有下弧形连柄、下载纤弧端和上弧形连柄、上载纤弧端的第二载纤凹道铰接于山形端梁的两端,同样步骤,通过右侧的连轴球和上连轴球将配置有下弧形连柄、下载纤弧端和上弧形连柄、上载纤弧端的第二载纤凹道铰接于山形端梁的两端;

第五步,通过上端的左连球和右连球,将连接有左载纤端、左连柄和右载纤端、右连柄的第一载纤凹道铰接到左架构梁及右架构梁上,同样,通过下端的左连球和右连球,将连接有左载纤端、左连柄和右载纤端、右连柄的第一载纤凹道铰接到左架构梁及右架构梁上,到此,始端的渗流监测装置布置结束;

第六步,将第一支撑架构柱一端插入到上水平横梁中的上端槽中,第一支撑架构柱的另一端布置于底转台螺槽中,将第二支撑架构柱一端旋入到上转台螺槽中,按下通底竖梁,且将转台圆槽在通底竖梁的上下端进行布置,以完全封闭通底竖梁,将第二支撑架构柱另一端连接到另一渗流监测装置的上水平横梁中的横梁卡槽中,绕着通底竖梁旋动上下第一支撑架构柱和第二支撑架构柱以调整渗流监测装置布置形式,从而与渗流待测区域待测结构有效吻合,将两个渗流监测装置之间的下水平横梁依照上述同样的步骤通过另一新的旋转支架将不同的渗流监测装置串联连接,调整支撑架构柱的转向,进而完成末端的渗流监测装置布置,将所有渗流监测装置中的标定光纤和渗流测量光纤与信息收集装置连接;

第七步,打开信息收集装置,首先将标定光纤的信息进行收集,去除其中与均值差别较大的光纤,且保留其温度变化较小的几根,将相互校正处理之后的标定光纤作为最终的标定光纤;

第八步,待渗流水体经过该区域时,通过上渗析棒和下渗析棒将渗流水体的热量直接传递到渗流测量光纤处,实时记录其变化情况,与第七步的标定光纤进行比对分析,辨识该处渗流状态,当涉水结构物的渗流水体流过渗流监测装置时,第一监测光纤单元和第二监测光纤单元内的第一载纤凹道和第二载纤凹道将流过的水体汇集,实时记录信息采集装置采集到的数据,且将采集到的数据值与标定光纤值进行差值,将差值结果绘制成时程曲线,若时程曲线变化较大,则该处即存在渗流水体,实现定位;通过上述同样方法,分析渗流监测装置中不同方向布置的监测光纤单元的时程曲线,若某一方向上监测光纤的时程曲线波动较大,则判定该方向上存在渗流水体,实现定向;进而,最终实现对涉水结构物渗漏定位与定向监测。

《涉水结构物渗漏无热源光纤定位定向系统及监测方法》的涉水结构物渗漏无热源光纤定位定向系统,包括水平及竖直方向的四个监测光纤单元进行监测,每个监测光纤单元内有一根渗流测量光纤、两根标定用光纤,四周环绕型布置可最大限度地监测来自不同方向的渗流状况,极大地避免了某些方向上的渗流漏测情况,对于涉水结构物渗漏多维多向的准确定位和定向具有重要意义;且在只需要单独布置某向渗流监测的区域,其四向的监测光纤单元可以单独布设。

在《涉水结构物渗漏无热源光纤定位定向系统及监测方法》中,光纤信息收集装置为常见的光功率计、OTDR光时域反射仪、PPP-BOTDA预泵浦布里渊光时域分析仪等装置。

涉水结构物渗漏无热源光纤定位定向系统及监测方法有益效果

《涉水结构物渗漏无热源光纤定位定向系统及监测方法》的涉水结构物渗漏无热源光纤定位定向系统及监测方法,监测光纤单元无需借助外设热源对其加热即可进行监测,研发的渗流监测光纤单元系列化的外圆护壁,其上下对开的设计极大提升了实际工程中的运输及布设的能力,渗流监测装置的四向结构设计实现了全方位渗流监测,360°自由转动设计可无死角地布置于任意待测位置,有效弥补了传统监测技术及已有分布式光纤监测技术中的部分不足,具有无需加热、分布式、多向性、同步性等特点,在降低监测成本、提升监测精度及工程实用化等方面具有突出优势。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读