造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

热力设备实时数据中知识学习与挖掘算法研究中文摘要

2022/07/1696 作者:佚名
导读:电力生产过程中实时数据处理和应用的滞后不仅造成巨大的资源浪费,而且严重制约着电力生产过程数字化管理水平的提高。.在实时数据中学习和挖掘有关机组特性知识,既能够满足机组性能分析、运行优化和故障诊断的迫切需要,还能够浓缩信息。因此,本研究不仅具有明显的经济和社会效益,也是实现现代化管理的必由之路。.本研究选择凝汽器这一多输入、多输出、非线性和大惯性并具有特殊参量(排汽焓)的典型热力设备为研究对象,以知

电力生产过程中实时数据处理和应用的滞后不仅造成巨大的资源浪费,而且严重制约着电力生产过程数字化管理水平的提高。.在实时数据中学习和挖掘有关机组特性知识,既能够满足机组性能分析、运行优化和故障诊断的迫切需要,还能够浓缩信息。因此,本研究不仅具有明显的经济和社会效益,也是实现现代化管理的必由之路。.本研究选择凝汽器这一多输入、多输出、非线性和大惯性并具有特殊参量(排汽焓)的典型热力设备为研究对象,以知识样本的自主产生和自适应维护作为突破口,将数字信号处理技术、多元数理统计方法、运筹学优化方法、人工智能方法、蒸汽动力设备特性机理研究的成果交叉运用于动力设备特性知识的挖掘和学习,得到前期研究的有力支持。.研究成果不仅有助于解决汽轮机设备性能分析(低压缸效率)、运行优化(循环水优化调度)和故障诊断(真空系统故障诊断),还可以方便地推广应用于其他热力设备的知识发现和挖掘,具有便于移植应用等特点。 2100433B

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读