热带气旋的路径主要受大尺度的引导气流影响,热带气旋的运动被前美国国家飓风中心主管尼尔·弗兰克博士(Dr. Neil Frank)形容为“叶子被水流带动”。
在南北纬大约20度左右的热带气旋主要被副热带高压(一个长年在海洋上维持的高压区)的引导气流引导而向西移,这样由东向西的气流称为信风。在北大西洋,热带气旋会被信风从非洲西岸引导至加勒比海及北美洲,而在东北太平洋,热带气旋会被信风引导到达太平洋中部直至引导气流减弱。东风波是这区域很多热带气旋的前身,而在印度洋和西太平洋,风暴的形成主要被热带辐合带和季风槽的季度变化影响,相对于大西洋和东北太平洋,东风波形成热带气旋的比例较小。
与中纬度西风带的作用
当热带气旋移到较高纬度,其围绕副高活动的路径会被位于高纬度的低压区所改变。当热带气旋向两极移近低压区,会逐渐出现偏东向量,这是热带气旋转向的过程。例如一个正向西往亚洲大陆移动的台风可能会因为中国或西伯利亚上空出现低压区而逐渐转向北方,继而加速转向东北,擦过日本的海岸。台风转向东北,是因为当其位于副高北缘,引导气流是从西往东。
科里奥利力(简称科氏力),是惯性系统(空气流动为直线运动)在非惯性系统(地球自转为旋转运动)上移动而产生的一种现象。科氏力并非真实存在,而是对于一个位在非惯性系统上观察者而言,会认为惯性系统的行进路径发生偏移,因而假想出一个加速度,此加速度乘上物体质量便成为一个假想力。虽然科氏力只需要地球自转就可以产生,不过考虑地球的球体形状,需要加入一个与纬度有关的
其中
其中v为地球自转速度的水平分量。由此公式可知纬度愈高,科里奥利加速度愈大,在赤道则为零(因此赤道上通常不会生成热带气旋。
科氏力在地球上的特例称做地转偏向力,对气旋运动的影响主要有两个,一方面决定了气旋系统的旋转方式;另一方面则是决定气旋的前进方向。
当空气沿气压梯度进入低压中心,由于大气流动与地球自转方式的差异,会使大气流动发生一定程度的偏离。在北半球,当低压中心以北的空气南移,会向与地球自转相反的方向(西方)偏离;其以南的空气北移时则会向地球自转的方向(东方)偏离,而南半球空气偏离的方向相反。因为科氏力与空气向低压中心的速度相垂直,这便创造了气旋系统旋转的原动力:北半球的气旋逆时针方向转动,南半球的气旋则顺时针方向转动。
科氏力也使气旋系统在没有强引导气流影响下移向两极。热带气旋向两极旋转的部分会受科氏力影响轻微增加向两极的分量,而其向赤道旋转的部分则会被轻微增加向赤道的分量。在地球上越接近赤道科氏力会越弱,所以科氏力影响热带气旋向两极的分量会较向赤道的分量为多。因此,在没有其他引导气流抵消科氏力的情况下,北半球的热带气旋一般会向北移动,而南半球的热带气旋则会向南移动。
角动量守恒
科氏力虽然决定了气旋旋转的方向,但其高速旋转的主要动力却非科氏力,而是角动量守恒的结果:空气从远大于气旋范围的区域抽入低气压中心,由于旋转半径减小而角动量不变,因此导致气旋旋转时的角速度大大地增加。
热带气旋云系最明显的运动是向着中心的,而角动量守恒原理也使外部流入的气流,在接近低气压中心的时候会逐渐加速。当气流到达中心之后会开始向上、向外流动,因此高层的云系也会向外流出(辐散)。这是源于已经释放湿气的空气在高空从热带气旋的“烟囱”被排出。辐散使薄的卷云在高空形成,并在热带气旋外部旋转,这些卷云可能就是热带气旋来临的首个警号。
除了热带气旋本身的旋转,角动量守恒也影响了气旋的移动路径。低纬度地区的地球自转半径较大,因此气体流动的偏移较小;高纬度地区的地球自转半径较小,所以气体流动的偏移较大。这样的力量也是热带气旋在北半球往北移动,南半球往南移动的原因之一。
藤原效应或称双台效应,是指两个或多个距离不远的气旋互相影响的状态,往往会造成热带气旋移动方向或速度的改变。藤原效应常见的影响依照热带气旋之间的强弱程度不同而大致分为两种:若两个热带气旋有强弱差距,则较弱者会绕着较强者的外围环流作旋转移动(在北半球为逆时针旋转,南半球则是顺时针旋转),直到两者距离大到藤原效应消失,或到两者合并为止。如果两个热带气旋的强弱差不多,则会以两者连线的中心为圆心,共同绕着这个圆心旋转,直到有其他的天气系统影响,或其中之一减弱为止。
登陆”的官方定义是风暴的中心(环流的中心,而非边缘)越过海岸线,但在热带气旋登陆前数小时,沿岸和内陆地区已会有风暴的状况。因为热带气旋风力最强的位置不在中心,即使热带气旋没有登陆,陆地上也可能感受到其最强的风力。