对于大型重载全地面工程机械而言,其底盘的行车稳定性直接影响整机作业性能。除底盘动力系统外,其悬架系统是影响行车稳定性的关键因素。
截至2014年1月27日,以全地面起重机底盘悬架系统为例,普遍采用的是传统刚性桥。根据导向机构的结构特点主要分为非独立悬架和独立悬架两大类;其中,非独立悬架的左右车轮装在一根整体的刚性轴或非断开式驱动桥的桥壳上,而独立悬架在左、右车轮之间没有一根刚性梁或非断开式车桥连接,左、右车轮各自“独立”地与车架或车身相连,也就是说,构成断开式车桥。基于两者的结构特性,全地面起重机底盘采用的悬架结构逐步向独立悬架结构转型。
请参见图1和图2,其中,图1为截至2014年1月27日技术中一种典型的独立悬架系统的结构示意图,图2为图1的侧向示意图。
如图所示,该悬架系统为断开式车桥,分别通过两个万向传动轴10将动力传递至两侧轮边。其悬挂油缸20的导向套固定在车架30上,活塞杆下端与车轮轮边相连,起到支撑车架的作用,并缓冲车桥跳动引起的车架振动;其主减速器40与车架固定连接在一起,采用万向传动轴与轮边相连,实现力的传递;其转向机构的摇臂50安装在悬挂油缸导向套上,两者之间安装滚动轴承,可以相对转动,车轮转向时,助力油缸带动转向摇臂转动,转向摇臂带动与轮边固连的铰链机构(是否需要注明铰链机构的序)的转动,实现车轮转向。
然而,受其自身结构的限制,独立悬架系统存在以下不足:
首先,悬挂油缸导向套的侧面与车架相连,活塞杆下端与车轮轮边相连,车身的重量与地面施加到轮胎的支反力全部作用于悬挂油缸,受力特性较差,影响使用寿命。
其次,整套转向机构安装在主减速器上方,无法有效控制主减速器与地面的最小间隙,行车通过性较差。
有鉴于此,亟待另辟蹊径针对工程机械用独立悬架系统进行优化设计,以有效降低悬挂油缸的受力状态,避免磨损影响使用性能及寿命。