造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

电介质极化极化机制

2022/07/16279 作者:佚名
导读:电介质极化电子、离子位移极化 电子位移极化在外电场作用下,原子外围的电子轨道相对于原子核发生位移,原子中的正、负电荷重心产生相对位移。这种极化称为电子位移极化(也称电子形变极化)。 离子位移极化离子在电场作用下偏移平衡位置的移动,相当于形成一个感生偶极矩;也可以理解为离子晶体在电场作用下离子间的键合被拉长,例如碱卤化物晶体就是如此。根据经典弹性振动理论可以估计出离子位移极化率。 电介质极化电介质极

电介质极化电子、离子位移极化

  1. 电子位移极化在外电场作用下,原子外围的电子轨道相对于原子核发生位移,原子中的正、负电荷重心产生相对位移。这种极化称为电子位移极化(也称电子形变极化)。

  2. 离子位移极化离子在电场作用下偏移平衡位置的移动,相当于形成一个感生偶极矩;也可以理解为离子晶体在电场作用下离子间的键合被拉长,例如碱卤化物晶体就是如此。根据经典弹性振动理论可以估计出离子位移极化率。

电介质极化电介质极化弛豫极化

这种极化机制也是由外加电场造成的,但与带电质点的热运动状态密切相关。例如,当材料中存在着弱联系的电子、离子和偶极子等弛豫质点时,温度造成的热运动使这些质点分布混乱,而电场使它们有序分布,平衡时建立了极化状态。这种极化具有统计性质,称为热弛豫(松弛)极化。极化造成带电质点的运动距离可与分子大小相比拟,甚至更大。由于是一种弛豫过程,建立平衡极化时间约为101~102s,并且由于创建平衡要克服一定的位能,故吸收一定能量。因此,与位移极化不同,弛豫极化是一种非可逆过程。

弛豫极化包括电子弛豫极化、离子弛豫极化、偶极子弛豫极化。它多发生在聚合物分子、晶体缺陷区或玻璃体内。

电介质极化取向极化

沿外场方向取向的偶极子数大于与外场反向的偶极子数,因此电介质整体出现宏观偶极矩,这种极化称为取向极化。

这是极性电介质的一种极化方式。在无外电场时,由于分子的热运动,偶极矩的取向是无序的,所以总的平均偶极矩较小,甚至为0。而组成电介质的极性分子在电场作用下,除贡献电子极化和离子极化外,其固有的电偶极矩沿外电场方向有序化。在这种状态下的极性分子的相互作用是一种长程作用。尽管固体中极性分子不能像液态和气态电介质中的极性分子那样自由转动,但取向极化在固态电介质中的贡献是不能忽略的。对于离子晶体,由于空位的存在,电场可导致离子位置的跃迁,如玻璃中的钠离子可能以跳跃方式使偶极子趋向有序化。

电介质极化电介质极化空间电荷极化

众所周知,离子多晶体的晶界处存在空间电荷。实际上不仅晶界处存在空间电荷,其他二维、三维缺陷皆可引入空间电荷,可以说空间电荷极化常常发生在不均匀介质中。这些混乱分布的空间电荷,在外电场作用下,趋向于有序化,即空间电荷的正、负电荷质点分别向外电场的负、正极方向移动,从而表现为极化。

宏观不均匀性,例如夹层、气泡等也可形成空间电荷极化,因此,这种极化又称界面极化。由于空间电荷的积聚,可形成很高的与外场方向相反的电场,故而有时又称这种极化为高压式极化。

空问电荷极化随温度升高而下降。这是因为温度升高,离子运动加剧,离子容易扩散,因而空间电荷减小。空间电荷极化需要较长时间,大约几秒到数十分钟,甚至数十小时,因此空间电荷极化只对直流和低频下的极化强度有贡献。 2100433B

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读