通过不同电极、不同粘土的电渗试验,进一步探明了电渗的矿物学机理,研究表明,电渗的效果取决于土体中可运移离子的迁移能力,而非取决于吸力引起的反向水力梯度和电势梯度作用的平衡,因此提高电渗排水固结效果应该从维持土体中离子的运移能力着手。 本项目研究把EKG材料从概念变成现实,是电渗排水固结领域的重大进展。EKG材料同时解决了之前一直困扰电渗法的两大问题——电极腐蚀和电渗能耗过高的问题,激起了国内对电渗研究的极大热情。 电渗能级梯度理论,以土体能级密度代替吸力,构建了全新的排水固结理论框架,并为电渗理论研究提供了新的视角。基于电渗能级梯度理论,提出了电渗排水固结的设计方法,该方法弥补了传统Esrig理论无法给出电学设计参数的不足。 研发的EKG材料、建立的电渗能级梯度理论、提出的电渗排水固结设计方法,通过现场试验得到了验证。现场试验场地面积为19m×15m,淤泥吹填深度为5.8m,经过36 天的电渗排水固结,含水量从62%降低到36%,承载力从0提高到70kPa,取得了良好的效果。 随着本项目研究的推进,目前电渗法面临的新的挑战包括:1)大面积应用时需要很大功率的电源;2)电势沿深度方向损失,5m以上吹填淤泥的排水固结仍然是个挑战;3)EKG材料的成本很高。这些新的挑战是下一步研究的重点。 2100433B